分析 (1)根據(jù)定義易算出含具體值的拋物線y=2x2的碟寬,利用端點(第一象限)橫縱坐標的相等.推廣至含字母的拋物線y=ax2(a>0),類似.而拋物線y=a(x-2)2+3(a>0)為頂點式,可看成y=ax2平移得到,則發(fā)現(xiàn)碟寬只和a有關.
(2)根據(jù)(1)的結(jié)論,根據(jù)碟寬易得關于a的方程$\frac{2}{a}$=6,解方程即可求得a的值.代入拋物線中得出解析式即可得出結(jié)論.
解答 解:(1)∵a>0,
∴y=ax2的圖象大致如下:![]()
其必過原點O,記AB為其碟寬,AB與y軸的交點為C,連接OA,OB.
∵△OAB為等腰直角三角形,AB∥x軸,
∴OC⊥AB,
∴∠AOC=∠BOC=$\frac{1}{2}$∠AOB=$\frac{1}{2}$×90°=45°,
∴△ACO與△BCO亦為等腰直角三角形,
∴AC=OC=BC,
∴xA=yA,xB=yB,代入y=ax2,
∴A(-$\frac{1}{a}$,$\frac{1}{a}$),B($\frac{1}{a}$,$\frac{1}{a}$),C(0,$\frac{1}{a}$),
∴AB=$\frac{2}{a}$,OC=$\frac{1}{a}$,
即y=ax2的碟寬為$\frac{2}{a}$.
∵拋物線y=x2對應的a=1,得碟寬$\frac{2}{a}$為2;碟頂(0,0),
故答案為:2,(0,0)
(2)由(1)知拋物線y=ax2(a>0),碟寬為$\frac{2}{a}$;
拋物線y=a(x-2)2+4(a>0)可看成y=ax2向右平移2個單位長度,再向上平移3個單位長度后得到的圖形,
∵平移不改變形狀、大小、方向,
∴拋物線y=a(x-2)2+3(a>0)與拋物線y=ax2的碟寬一樣,
∵拋物線y=ax2(a>0),碟寬為$\frac{2}{a}$,
∴拋物線y=a(x-2)2+3(a>0),
碟寬為$\frac{2}{a}$.
(3)∵y=ax2-4ax-$\frac{5}{3}$=a(x-2)2-(4a+$\frac{5}{3}$),
∴同(1),其碟寬為$\frac{2}{a}$,
∵y=ax2-4ax-$\frac{5}{3}$的碟寬為6,
∴$\frac{2}{a}$=6,
解得a=$\frac{1}{3}$.
把a=$\frac{1}{3}$代入y=ax2-4ax-$\frac{5}{3}$=$\frac{1}{3}$x2-$\frac{4}{3}$x-$\frac{5}{3}$,
∴頂點坐標為(2,-3),
即:碟頂為(2,-3).
點評 本題考查二次函數(shù)綜合題,題目中主要涉及特殊直角三角形,二次函數(shù)解析式與圖象性質(zhì),解題的關鍵是由拋物線y=ax2(a>0),得到碟寬只和a有關,即碟寬$\frac{2}{a}$.
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{2}+\sqrt{3}=\sqrt{5}$ | B. | 3$\sqrt{2}-\sqrt{2}$=2$\sqrt{2}$ | C. | 2$+\sqrt{2}=2\sqrt{2}$ | D. | $\sqrt{(-2)^{2}}$=±2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 75° | B. | 80° | C. | 135° | D. | 150° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | -1 | C. | $\frac{1}{25}$ | D. | -$\frac{1}{25}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | mn>-9 | B. | -9≤mn≤0 | C. | -4≤mn≤0 | D. | mn≥-9且mn≠0 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com