分析 過點(diǎn)P點(diǎn)作PE⊥OA于E,PF⊥OB于F,根據(jù)垂直的定義得到∠PEC=∠PFD=90°,由OM是∠AOB的平分線,根據(jù)角平分線的性質(zhì)得到PE=PF,利用四邊形內(nèi)角和定理可得到∠PCE+∠PDO=360°-90°-90°=180°,而∠PDO+∠PDF=180°,則∠PCE=∠PDF,然后根據(jù)“AAS”可判斷△PCE≌△PDF,根據(jù)全等的性質(zhì)即可得到PC=PD.
解答 解:如圖,過點(diǎn)P點(diǎn)作PE⊥OA于E,PF⊥OB于F,![]()
∴∠PEC=∠PFD=90°,
∵OM是∠AOB的平分線,
∴PE=PF,
∵∠AOB=90°,∠CPD=90°,
∴∠PCE+∠PDO=360°-90°-90°=180°,
而∠PDO+∠PDF=180°,
∴∠PCE=∠PDF,
在△PCE和△PDF中,
$\left\{\begin{array}{l}{∠PCE=∠PDF}\\{∠PEC=∠PFD}\\{PE=PF}\end{array}\right.$
∴△PCE≌△PDF(AAS),
∴PC=PD.
點(diǎn)評(píng) 本題考查了角平分線的性質(zhì):角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等,考查了三角形全等的判定與性質(zhì).解決本題的關(guān)鍵是熟記角平分線的性質(zhì),全等三角形的性質(zhì)與判定.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目: 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2x(2x3+3x-1)=4x4+6x2-2x | B. | b(b2-b+1)=b3-b2+b | ||
| C. | -$\frac{1}{2}x(2{x^2}-2)=-{x^3}$-x | D. | $\frac{2}{3}x(\frac{3}{2}{x^3}-3x+1)={x^4}-2{x^2}+\frac{2}{3}$x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com