分析 如圖所示:設(shè)AB=x,由勾股定理得;AC=$\sqrt{{x}^{2}+25}$.由翻折的性質(zhì)可知OC=$\frac{\sqrt{{x}^{2}+25}}{2}$,然后依據(jù)AAS證明Rt△AOF≌Rt△CPE,從而可求得OE=$\frac{\sqrt{6}}{2}$,由△ABC∽△EOC可求得x=$\sqrt{5}$.即AB=$\sqrt{5}$.
解答 解:如圖所示:![]()
設(shè)AB=x,由勾股定理得;AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=$\sqrt{{x}^{2}+25}$.
由翻折的性質(zhì)可知OC=$\frac{1}{2}AC$=$\frac{\sqrt{{x}^{2}+25}}{2}$,EF⊥AC.
∵AF∥EC,
∴∠AFE=∠FEC,∠FAO=∠ECO.
在Rt△AOF和Rt△CPE中,
$\left\{\begin{array}{l}{∠AFE=∠FEC}\\{∠FAO=∠ECO}\\{AO=CO}\end{array}\right.$,
∴Rt△AOF≌Rt△CPE.
∴OE=OF=$\frac{\sqrt{6}}{2}$.
∵∠OCE=∠BCA,∠B=∠EOC=90°,
∴△ABC∽△EOC.
∴$\frac{AB}{CB}=\frac{OE}{OC}$,即$\frac{x}{5}=\frac{\frac{\sqrt{6}}{2}}{\frac{\sqrt{{x}^{2}+25}}{2}}$.
解得:x=$\sqrt{5}$.
∴AB=$\sqrt{5}$.
點(diǎn)評 本題主要考查的是翻折的性質(zhì)、全等三角形的性質(zhì)和判定、相似三角形的性質(zhì)和判定,依據(jù)相似三角形的性質(zhì)列出關(guān)于x的方程是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 10° | B. | 20° | C. | 25° | D. | 30° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com