| A. | $\frac{9}{2}$ | B. | 2$\sqrt{5}$ | C. | $\frac{4\sqrt{13}}{3}$ | D. | $\frac{13}{3}$ |
分析 連接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四邊形AFOE,F(xiàn)BGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出結(jié)果.
解答 解:連接OE,OF,ON,OG,
在矩形ABCD中,
∵∠A=∠B=90°,CD=AB=4,
∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),
∴∠AEO=∠AFO=∠OFB=∠BGO=90°,
∴四邊形AFOE,F(xiàn)BGO是正方形,
∴AF=BF=AE=BG=2,
∴DE=3,
∵DM是⊙O的切線,
∴DN=DE=3,MN=MG,
∴CM=5-2-MN=3-MN,
在Rt△DMC中,DM2=CD2+CM2,
∴(3+NM)2=(3-NM)2+42,
∴NM=$\frac{4}{3}$,
∴DM=3+$\frac{4}{3}$=$\frac{13}{3}$.
故選D.
點(diǎn)評(píng) 本題考查了切線的性質(zhì),勾股定理,正方形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 平均數(shù) | B. | 中位數(shù) | C. | 方差 | D. | 眾數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 130° | B. | 50° | C. | 70° | D. | 30° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 甲穩(wěn)定 | B. | 乙穩(wěn)定 | ||
| C. | 甲和乙一樣穩(wěn)定 | D. | 甲、乙穩(wěn)定性無(wú)法比較 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| 書(shū)名 | 學(xué)生數(shù)(人) |
| 《湯姆•索亞歷險(xiǎn)記》 | 45 |
| 《繁星•春水》 | 168 |
| 《童年》 | 56 |
| 《駱駝祥子》 | 62 |
| 《基地》 | 69 |
| 合計(jì) | 400 |
| A. | 平均數(shù) | B. | 中位數(shù) | C. | 眾數(shù) | D. | 方差 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0.33432×106 | B. | 3.3432×106 | C. | 3.3432×105 | D. | 33.432×105 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com