分析 根據(jù)等邊對等角可得∠E=∠BDE,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠ABC=2∠BDE,從而求出∠C=∠BDE,再求出∠C=∠CDF,然后根據(jù)等角對等邊求出DF=FC,再根據(jù)等角的余角相等求出∠CAD=∠ADF,根據(jù)等角對等邊求出DF=AF,即可得到AF=FC.
解答 (1)證明:∵BE=BD,
∴∠E=∠BDE,
∵∠ABC=∠E+∠BDE=2∠BDE,∠ABC=2∠C,
∴∠C=∠BDE,
又∵∠BDE=∠CDF,
∴∠C=∠CDF,
∴DF=FC,
∴△DFC為等腰三角形;
∵AD為BC邊上的高,
∴∠CDF+∠ADF=∠ADC=90°,
∠C+∠CAD=180°-90°=90°,
∴∠CAD=∠ADF,
∴DF=AF,
∴△ADF是等腰三角形;
(2)解:由(1)知AF=DF=FC.
點評 本題考查了等腰三角形的判定與性質(zhì),等角的余角相等的性質(zhì),本題的關(guān)鍵是得到∠FDC=∠C..
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | b<c<a | B. | c<a<b | C. | c<b<a | D. | a<b<c |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{7}{20}$ | B. | $\frac{1}{10}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{20}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a=7,b=8 | B. | a=8,b=7 | C. | a=-7,b=-8 | D. | a=-8,b=-7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 4 | D. | 2$\sqrt{5}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com