【題目】如圖,
是正方形
的對(duì)角線,
.邊
在其所在的直線上平移,將通過平移得到的線段記為
,連接
、
,并過點(diǎn)
作
,垂足為
,連接
、
.
(1)請(qǐng)直接寫出線段
在平移過程中,四邊形
是什么四邊形;
(2)請(qǐng)判斷
、
之間的數(shù)量關(guān)系和位置關(guān)系,并加以證明;
(3)在平移變換過程中,設(shè)
,
,求
與
之間的函數(shù)關(guān)系式.
![]()
【答案】(1)四邊形
是平行四邊形;(2)
且
,證明見解析;(3)見解析.
【解析】
(1)根據(jù)平移的性質(zhì),可得PQ=BC=AD,根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形,可得答案;
(2)根據(jù)正方形的性質(zhì),平移的性質(zhì),可得PQ與AB的關(guān)系,根據(jù)等腰直角三角形的判定與性質(zhì),可得∠PQO,根據(jù)全等三角形的判定與性質(zhì),可得AO與OP的數(shù)量關(guān)系,根據(jù)余角的性質(zhì),可得AO與OP的位置關(guān)系;
(3)根據(jù)等腰直角三角形的性質(zhì),可得OE的長(zhǎng),根據(jù)三角形的面積公式,可得函數(shù)關(guān)系式.
(1)根據(jù)平移的性質(zhì)可得,PQ=BC,
∵四邊形ABCD是正方形,
∴BC=AD,BC∥AD,
∴PQ=AD,PQ∥AD,
∴四邊形
是平行四邊形.
(2)
且
.證明如下:
①當(dāng)
向右平移時(shí),如圖,
![]()
∵四邊形
是正方形,
∴
,
.
∵
,∴
.
∵
,
∴
,
∴![]()
∴
,
∴
.
在
和
中,
∴
,
∴
,
.
∵
,
∴
,即
.
∴
,
∴
且
.
②當(dāng)
向左平移時(shí),如圖,
![]()
同理可證,
,
∴
,
,
∴
,
∴
,
∴
,
∴
且
.
(3)過點(diǎn)
作
于
.
在
中,
,
∴
.
①當(dāng)
向右平移時(shí),如圖,
![]()
,
∴
.
∵
,
∴
.
②當(dāng)
向左平移時(shí),如圖,
![]()
,
∴
.
∵
.
∴
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司招聘職員,對(duì)甲、乙兩位候選人進(jìn)行了面試和筆試,面試中包括形體和口才,筆試中包括專業(yè)水平和創(chuàng)新能力考察,他們的成績(jī)(百分制)如下表:
候選人 | 面試 | 筆試 | ||
形體 | 口才 | 專業(yè)水平 | 創(chuàng)新能力 | |
甲 | 86 | 90 | 96 | 92 |
乙 | 92 | 88 | 95 | 93 |
若公司根據(jù)經(jīng)營(yíng)性質(zhì)和崗位要求認(rèn)為:形體、口才、專業(yè)水平、創(chuàng)新能力按照4:6:5:5的比確定,請(qǐng)計(jì)算甲、乙兩人各自的平均成績(jī),看看誰(shuí)將被錄?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A(-4,0),點(diǎn)B在直線y=x+2上.當(dāng)A、B兩點(diǎn)間的距離最小時(shí),點(diǎn)B的坐標(biāo)是( )
A. (
,
) B. (
,
) C. (-3,-1) D. (-3,
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線L與y=2x+1的交于點(diǎn)A(2,a),與直線y=x+2的交于點(diǎn)B(b,1)
(1)求a,b的值;
(2)求直線l的函數(shù)表達(dá)式;
(3)求直線L、x軸、直線y=2x+1圍成的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游泳館每年夏季推出兩種游泳付費(fèi)方式,方式一:先購(gòu)買會(huì)員證,每張會(huì)員證100元,只限本人當(dāng)年使用,憑證游泳每次再付費(fèi)5元;方式二:不購(gòu)買會(huì)員證,每次游泳付費(fèi)9元.
設(shè)小明計(jì)劃今年夏季游泳次數(shù)為x(x為正整數(shù)).
(I)根據(jù)題意,填寫下表:
游泳次數(shù) | 10 | 15 | 20 | … | x |
方式一的總費(fèi)用(元) | 150 | 175 | ______ | … | ______ |
方式二的總費(fèi)用(元) | 90 | 135 | ______ | … | ______ |
(Ⅱ)若小明計(jì)劃今年夏季游泳的總費(fèi)用為270元,選擇哪種付費(fèi)方式,他游泳的次數(shù)比較多?
(Ⅲ)當(dāng)x>20時(shí),小明選擇哪種付費(fèi)方式更合算?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自1993年起,聯(lián)合國(guó)將每年的3月22日定為“世界水日”,宗旨是喚起公眾的節(jié)水意識(shí),加強(qiáng)水資源保護(hù).某校在開展“節(jié)約每一滴水”的活動(dòng)中,從初三年級(jí)隨機(jī)選出20名學(xué)生統(tǒng)計(jì)出各自家庭一個(gè)月的節(jié)約用水量,有關(guān)數(shù)據(jù)整理如下表.
節(jié)約用水量(單位:噸) | 1 | 1.2 | 1.4 | 2 | 2.5 |
家庭數(shù) | 4 | 6 | 5 | 3 | 2 |
這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( )
A. 1.2,1.2; B. 1.4,1.2; C. 1.3,1.4; D. 1.3,1.2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,△
的頂點(diǎn)
、
在坐標(biāo)軸上,點(diǎn)
的坐標(biāo)是(2,2).將△ABC沿
軸向左平移得到△A1B1C1,點(diǎn)
落在函數(shù)y=-
.如果此時(shí)四邊形
的面積等于
,那么點(diǎn)
的坐標(biāo)是________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,
,點(diǎn)
在邊
上,
⊥
,點(diǎn)
為垂足,
,∠DAB=450,tanB=
.
(1)求
的長(zhǎng);
(2)求
的余弦值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為
,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
![]()
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得
≌
即可得
,則可證得
為
的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得
利用勾股定理即可求得
的長(zhǎng),又由OE∥AB,證得
根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得
的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得
與
的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
![]()
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是
的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為![]()
![]()
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com