分析 (1)連接BD,由ED為圓O的直徑,利用直徑所對(duì)的圓周角為直角得到∠DBE為直角,由BCOE為平行四邊形,得到BC與OE平行,且BC=OE=1,在直角三角形ABD中,C為AD的中點(diǎn),利用斜邊上的中線等于斜邊的一半求出AD的長(zhǎng)即可;
(2)連接OB,由BC與OD平行,BC=OD,得到四邊形BCDO為平行四邊形,由AD為圓的切線,利用切線的性質(zhì)得到OD垂直于AD,可得出四邊形BCDO為矩形,利用矩形的性質(zhì)得到OB垂直于BC,即可得出BC為圓O的切線.
解答 解:(1)如圖,連接BD,
∵DE是直徑,
∴∠DBE=90°,
如果四邊形BCOE為平行四邊形,![]()
∴BC∥OE,BC=OE=1,
在Rt△ABD中,C為AD的中點(diǎn),
∴BC=$\frac{1}{2}$AD=1,
則AD=2,
∴當(dāng)AD=2時(shí),四邊形BCOE為平行四邊形,
故答案為:2;
(2)是,理由如下:
如圖,連接OB.
∵BC∥OD,BC=OD,
∴四邊形BCDO為平行四邊形,
∵AD為圓O的切線,
∴OD⊥AD,
∴四邊形BCDO為矩形,
∴OB⊥BC,
則BC為圓O的切線.
點(diǎn)評(píng) 此題考查了切線的判定與性質(zhì),直角三角形斜邊上的中線性質(zhì),以及平行四邊形的判定與性質(zhì),熟練掌握切線的判定與性質(zhì)是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -6 | B. | 6 | C. | $\frac{1}{6}$ | D. | -$\frac{1}{6}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | AC=AB | B. | $\widehat{DE}$=$\widehat{BD}$ | C. | ∠A=45° | D. | $\frac{CE}{CD}$=$\frac{CB}{CA}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com