分析 (1)首先證明∠CAD=∠B,根據(jù)∠AED=∠B即可證明結(jié)論.
(2)只要證明AD∥OE,可得$\frac{AO}{AP}$=$\frac{DE}{DP}$=$\frac{1}{3}$,由此即可解決問題.
解答 (1)證明:∵AB是⊙O的直徑,
∴∠ADB=90°,
∵AC是切線,
∴∠CAB=90°,
∴∠DAB+∠DBA=90°,∠DAB+∠CAD=90°,
∴∠CAD=∠DBA,
∵∠DBA=∠AED,
∴∠AED=∠CAD.
(2)解:連接OE.![]()
∵AE平分∠BAD,
∴∠DAE=∠EAB,
∵OA=OE,
∴∠AEO=∠EAB,
∴∠DAE=∠AEO,
∴AD∥OE,
∴$\frac{AO}{AP}$=$\frac{DE}{DP}$=$\frac{1}{3}$,
∴DP=3DE=6.
點評 本題考查切線的性質(zhì)、直徑的性質(zhì)、平行線分線段成比例定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會添加常用輔助線,構(gòu)造平行線解決問題,屬于中考?碱}型.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com