科目:初中數(shù)學 來源: 題型:
恩施州自然風
光無限,特別是以“雄、奇、秀、幽、險”著稱于世.著名的恩施大峽谷(A)和世界級自然保護區(qū)星斗山(B)位于筆直的滬渝高速公路x同側,AB=
50km,點A、B到直線x的距離分別為10km 和40km.要在滬渝高速公路旁修建一服務區(qū)P,向A、B兩景區(qū)運送游客.小民設計了兩種方案,圖(1)是方案一的示意圖(AP與直線x垂直,垂足為P),點P到點A、B的距離之和S1=PA+PB;圖(2)是方案二的示意圖(點A關于直線x的對稱點是點A′,連接BA′交直線x于點P),點P到點A、B的距離之和S2=PA+PB.
(1)求
S1、S2,并比較它們的大;
(2)請你說明S2=PA+PB的值為最小;
(3)擬建的恩施到張家界高速公路y與滬渝高速公路x垂直,建立如圖(3)所示的直角坐標系,點B到直線y的距離為30km.請你在x旁和y旁各修建一服務區(qū)P、Q,使點P、A、B、Q組成的四邊形的周
長最小,并求出這個最小值.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(1)如圖(1),在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連接ME.
正方形AB
CD中,∠B=∠BCD=90°,AB=BC.
∴ ∠NMC=180°- ∠AMN- ∠AMB=180°- ∠B- ∠AMB= ∠MAB=∠MAE.
(下面請你完成余下的證明過程)
![]()
(2)若將(1)中的“正方形ABCD”改為“正
三角形ABC”(如圖(2)),N是∠ACP的平分線上一點,則當∠AMN=60°時,結論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正n邊形AB
CD……X”,請你作出猜想:當∠AMN=_________°時,結論AM=MN仍然成立.(直接寫出答案,不需要證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在梯形ABCD中,AD∥BC,AD=4,BC=12,E是BC的中點.點P以每秒1個單位長度的速度從點A出發(fā),沿AD向點D運動;點Q同時以每秒2個單位長度的速度從點C出發(fā),沿CB向點B運動.點P停止運動時,點Q也隨之停止運動.當運動時間為 秒時,以點P,Q,E,D為頂點的四邊形是平行四邊形.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com