分析 (1)如圖2中,作SE⊥AF交弧AF于C.設(shè)圖2中的扇形的圓心角為n°,由題意$\frac{nπ•4}{180}$=2π•1,求出n即可解決問(wèn)題.
(2)在圖2中,根據(jù)垂線段最短求出AE,即為最短的長(zhǎng)度.
解答 解:(1)如圖2中,作SE⊥AF交弧AF于C.![]()
設(shè)圖2中的扇形的圓心角為n°,
由題意$\frac{nπ•4}{180}$=2π•1,
∴n=90°,
∵SA=SF,
∴△SFA是等腰直角三角形,
∴SE=$\frac{1}{2}$AF=$\frac{1}{2}$×$4\sqrt{2}$=2$\sqrt{2}$,
∴S陰=S扇形S-AF-S△SAF=$\frac{90π•{4}^{2}}{360}$-$\frac{1}{2}$×$4\sqrt{2}$×$2\sqrt{2}$=4π-8.
(2)在圖2中,∵SC是一條蜜糖線,AE⊥SC,AE=2$\sqrt{2}$,
∴根據(jù)垂線段最短,一只螞蟻從A沿著圓錐表面最少需要爬2$\sqrt{2}$個(gè)單位長(zhǎng)度才能吃到蜜糖.
點(diǎn)評(píng) 本題考查圓錐的側(cè)面展開(kāi)圖、弧長(zhǎng)公式、扇形面積公式、垂線段最短等知識(shí),解題的關(guān)鍵是靈活運(yùn)用這些公式解決問(wèn)題,學(xué)會(huì)利用參數(shù),構(gòu)建方程解決問(wèn)題,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com