分析 求出∠ADC=∠BDF,∠DAC=∠DBF,根據(jù)ASA推出△BDF≌△ADC,根據(jù)全等得出AC=BF,根據(jù)等腰三角形的性質(zhì)求出AC=2AE,即可得出答案.
解答 證明:∵BE⊥AC,AD⊥BC,
∴∠AEB=∠ADC=∠BDF=90°,
∵∠AFE=∠BFD,∠FBD+∠BDF+∠BFD=180°,∠AEB+∠AFE+∠DAC=180°,
∴∠DAC=∠DBF,
在△BDF和△ADC中
$\left\{\begin{array}{l}{∠FBD=∠DAC}\\{BD=AD}\\{∠BDF=∠ADC}\end{array}\right.$
∴△BDF≌△ADC,
∴BF=AC,
∵AB=BC,BE⊥AC,
∴AE=CE,
即AC=2AE,
∴BF=2AE.
點(diǎn)評(píng) 本題考查了全等三角形的性質(zhì)和判定和等腰三角形的性質(zhì),能求出△BDF≌△ADC是解此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5:8 | B. | 3:8 | C. | 3:5 | D. | 2:5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\sqrt{3}$ | B. | -3 | C. | $\sqrt{5}$ | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com