分析 先證明AG=AF,由SSS得到△OHD與△OED全等,得出∠ODH=∠ODE=54°,證出∠B=∠C=72°,利用SSS得到△GBD與△AGF全等,得出GB=AG,即G為AB的中點(diǎn),求出HD,GH,BD的長(zhǎng),設(shè)GB=xcm,由△DHB∽△GBD,利用相似三角形對(duì)應(yīng)邊成比例列出比例式,求出x的值,即可得出結(jié)果.
解答 解:∵五邊形DEFGH是正五邊形,![]()
∴∠HDE=∠DEF=∠EFG=∠FGH=∠GHD=108°,
∴∠BHD=∠CED=∠AGF=∠AFG=72°,
∴AG=AF,
同理:AF=CF,
同理:AF=CF,
∴GF=$\frac{1}{2}$BC,
∴△AGF是等腰三角形;
連接DG,如圖所示:
∵BC是⊙O的切線,
∴OD⊥BC,
∴∠BFO=∠CFO=90°,
在△OHD與△OED中,
$\left\{\begin{array}{l}{OH=OD}&{\;}\\{OD=OE}&{\;}\\{HD=HE}&{\;}\end{array}\right.$,
∴△OHD≌△OED(SSS),
∴∠ODH=∠ODE=54°,
∴∠HDB=∠EDC=36°,
∴∠B=∠C=72°,
∴BD=DH=DE=DC=GF,
在△GBD和△AGF中,
$\left\{\begin{array}{l}{AG=GB}&{\;}\\{GF=BD}&{\;}\\{DG=AF}&{\;}\end{array}\right.$,
∴△GBD≌△AGF(SSS),
∴GB=AG,
∴點(diǎn)G是線段AB的中點(diǎn);
∵五邊形DEFGH是正五邊形,
∴BD=DH=GH=2,
設(shè)GB=x,
∵∠BDH=∠BGD,∠B=∠B,
∴△DHB∽△GBD,
∴$\frac{DH}{GB}=\frac{BH}{BD}$,即$\frac{2}{x}$=$\frac{x-2}{2}$,
整理得:x2-2x-4=0,
解得:x=1±$\sqrt{5}$(負(fù)值舍去),
∴AG=GB=1+$\sqrt{5}$,
∴AB=2+2$\sqrt{5}$;
故答案為:2+2$\sqrt{5}$.
點(diǎn)評(píng) 此題考查了正五邊形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),等腰三角形的判定,切線的性質(zhì);熟練掌握正五邊形的性質(zhì),證明三角形全等和三角形相似是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a2+a2=a4 | B. | 2a2×a3=2 | C. | (a2)3=a6 | D. | 3a-2a=1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1+2 | B. | |-1| | C. | $\sqrt{(-2)^{2}}$ | D. | -2-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | y1<y2 | B. | y1=y2 | C. | y1>y2 | D. | 不能確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com