分析 ①在△ABC中,∠ABC+∠ACB=180°-∠A=120°,即∠FBC+∠FCB=60°,而∠BFE正好是△BFC的外角,即∠BFE=∠FBC+∠FCB=60°,故正確;
②若BC=BD,需滿足一個條件:∠BCD=∠BDC,且看這兩個角的表達式:∠BCD=180°-∠A-2∠DBA=120°-2∠DBA;∠BDC=∠BDA+∠A=60°+∠DBA;聯(lián)立兩式,可得∠DBA=20°;此時∠ABC=40°,而沒有任何條件可以說明∠ABC的度數(shù)是40°,即可得出本選項錯誤.
③由于F是∠ABC和∠ACB角平分線的交點,因此F是△ABC的內(nèi)心,可過F作AB、AC的垂線,通過證構(gòu)建的直角三角形全等,得出FE=FD的結(jié)論,因此結(jié)論正確;
④若BF=2DF,則F是△ABC的重心,即三邊中線的交點,而題目給出的條件是F是△ABC的內(nèi)心,顯然兩者的結(jié)論相矛盾,因此不正確.
解答
解:∵BD、CE分別是∠ABC和∠ACB的角平分線,
∴點F是△ABC的內(nèi)心,∠CBD=$\frac{1}{2}$∠ABC,∠BCE=$\frac{1}{2}$∠ACB,
∴∠BFE=∠CBD+∠BCE
=$\frac{1}{2}$(∠CBA+∠BCA)
=$\frac{1}{2}$(180°-∠A)=60°,即cos∠BFE=$\frac{1}{2}$,故①正確;
∵∠BDC=∠A+$\frac{1}{2}$∠ABC=60°+∠DBA,∠BCA=180°-∠A-2∠DBA=120°-2∠DBA,
∴若BC=BD成立,則應(yīng)有∠BDC=∠BCA,60°+∠DBA=120°-2∠DBA,即∠DBA=20°,
此時∠ABC=40°,
∴∠BCD=∠BDC=80°,
而根據(jù)題意,沒有條件可以說明∠ABC是40°,
故②錯誤;
∵點F是△ABC內(nèi)心,作FW⊥AC,F(xiàn)S⊥AB
則FW=FS,∠FSE=∠FWD=90°∠EFD=∠SFW=120°
∴∠SFE=∠WFD,△FSE≌△FDW,
∴FD=FE,故③正確;
由于點F是內(nèi)心而不是各邊中線的交點,故BF=2DF不一定成立,因此④錯誤.
因此本題正確的結(jié)論為①③,
故答案為:①③.
點評 本題考查了三角形的外接圓與外心、角平分線的性質(zhì)、三角形內(nèi)角和定理,綜合性強,難度較大.要特別注意的是④中,三角形外心和重心的區(qū)別,不要混淆兩者的概念.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | 2 | C. | 2$\sqrt{3}$ | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 20×($\frac{3}{2}$)4030 | B. | 20×($\frac{3}{2}$)4032 | C. | 20×($\frac{3}{2}$)2016 | D. | 20×($\frac{3}{2}$)2015 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| 隊員1 | 隊員2 | 隊員3 | 隊員4 | |
| 甲組 | 176 | 177 | 175 | 176 |
| 乙組 | 178 | 175 | 177 | 174 |
| A. | $\overline{{x}_{甲}}=\overline{{x}_{乙}}$,S甲2<S乙2 | B. | $\overline{{x}_{甲}}=\overline{{x}_{乙}}$,S甲2>S乙2 | ||
| C. | $\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,S甲2<S乙2 | D. | $\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,S甲2>S乙2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com