分析 先作圖構(gòu)建兩個(gè)直角三角形:△ACP和△BDP,并作點(diǎn)C關(guān)于AB的對(duì)稱點(diǎn)C′,根據(jù)兩點(diǎn)之間,線段最短可知$\sqrt{{x}^{2}+4}$+$\sqrt{{y}^{2}+9}$的最小值就是線段C′D的長,并根據(jù)平行相似求出x的值.
解答 解::如圖所示:AB=7,過A、B兩點(diǎn)分別作AB的垂線AC和BD,且AC=2,BD=3.作點(diǎn)C關(guān)于AB的對(duì)稱點(diǎn)C′,連接C′D交AB于P,連接CP,CP=C′P.![]()
設(shè)AP=x,BP=y,則y=7-x,
由勾股定理得:CP=$\sqrt{{x}^{2}+4}$,PD=$\sqrt{{y}^{2}+9}$,
則此時(shí)DC′=$\sqrt{{x}^{2}+4}$+$\sqrt{{y}^{2}+9}$的值最小,
∴C′D=C′P+DP=CP+DP=$\sqrt{{7}^{2}+{5}^{2}}$=$\sqrt{74}$.
∵AC′⊥AB,BD⊥AB,
∴AC′∥BD,
∴△APC′∽△BPD,
∴$\frac{AP}{PB}$=$\frac{AC′}{BD′}$,
∴$\frac{x}{7-x}$=$\frac{2}{3}$,
∴x=$\frac{14}{5}$,
故答案為:$\sqrt{74}$;$\frac{14}{5}$.
點(diǎn)評(píng) 本題是軸對(duì)稱的最短路徑問題,具體作法是:作某一點(diǎn)的對(duì)稱點(diǎn),與另一點(diǎn)相連,所構(gòu)成的線段長就是最短距離,通常利用勾股定理即可求出.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4+2$\sqrt{3}$ | B. | 4$\sqrt{7}$ | C. | 10 | D. | 4$\sqrt{3}$+4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3到4之間 | B. | 4到5之間 | C. | 5到6之間 | D. | 6到7之間 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2n$\sqrt{3}$ | B. | (2n+1)$\sqrt{3}$ | C. | (2n-1-1)$\sqrt{3}$ | D. | (2n-1)$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com