已知,如圖(a),拋物線
經(jīng)過點(diǎn)A(x1,0),B(x2,0),C(0,-2),其頂點(diǎn)為D.以AB為直徑的⊙M交y軸于點(diǎn)E、F,過點(diǎn)E作⊙M的切線交x軸于點(diǎn)N!螼NE=30°,
。
![]()
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)連結(jié)AD、BD,在(1)中的拋物線上是否存在一點(diǎn)P,使得△ABP與△ADB相似?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說明理由;
(3)如圖(b),點(diǎn)Q為
上的動(dòng)點(diǎn)(Q不與E、F重合),連結(jié)AQ交y軸于點(diǎn)H,問:AH·AQ是否為定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說明理由。
解:(1)圓的半徑
,
連接EM,
![]()
∵NE是⊙M的切線,∴ME⊥NE。
在Rt△MNE中,∠ONE=30°,MA=ME=4,
∴∠EMN=60°,MN=8!郞M=2。
∴OA=2,OB=6。
∴點(diǎn)A、B的坐標(biāo)分別為(―2,0),(6,0)。
∵拋物線經(jīng)過點(diǎn)A、B兩點(diǎn),
∴設(shè)拋物線的解析式為
,
又∵拋物線經(jīng)過點(diǎn)C(0,-2),
∴
,解得
。
∴拋物線的解析式為
,即
。
∵
,∴拋物線頂點(diǎn)D的坐標(biāo)為(2,
)。
(2)如圖,由拋物線的對(duì)稱性可知:AD=BD,∠DAB=∠DBA。
![]()
若在拋物線對(duì)稱性的右側(cè)圖象上存在點(diǎn)P,使△ABP與△ADB相似,
必須有∠BAP=∠BPA=∠BPD。
設(shè)AP交拋物線的對(duì)稱軸于D′點(diǎn),則D′(2,
)。
∴直線AP的解析式為
。
由
解得:
(舍去)。
∴P(10,8)。
過P作PG⊥x軸于點(diǎn)G,
在Rt△BGP中,BG=4,PG=8,
∴由勾股定理,得PB=
。
∵PA=8,∴PA≠PB!唷螧AP≠∠BPA。
∴△ABP與△ADB不相似。
同理可說明在對(duì)稱軸左邊的拋物線上也不存在符合條件的P點(diǎn)。
∴在該拋物線上不存在點(diǎn)P,使得△ABP與△ADB相似。
(3)連接AF、QF,
![]()
在△AQF和△AFH中,
由垂徑定理易知:
,
∴∠AQF=∠AFH。
又∠QAF=∠HAF,
∴△AQF∽△AFH。
∴
,∴
。
在Rt△AOF中,
,
∴AH·AQ=16,即:AH·AQ為定值
【解析】
試題分析:(1)由切線的性質(zhì)和含30度角直角三角形的性質(zhì),求出點(diǎn)A、B的坐標(biāo),從而應(yīng)用待定系數(shù)法求出拋物線的解析式,化為頂點(diǎn)式即可得到拋物線的頂點(diǎn)D的坐標(biāo)。
(2)應(yīng)用反證法分拋物線對(duì)稱性的右側(cè)和拋物線對(duì)稱性的左側(cè)兩種情況說明在該拋物線上不存在點(diǎn)P,使得△ABP與△ADB相似。
(3)由垂徑定理和相似三角形的判定和性質(zhì),可得
,在Rt△AOF中,應(yīng)用勾股定理可得
,從而得出AH·AQ為定值的結(jié)論。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| ||
| 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
|
| t(秒) | 1 | 2 | 3 | … |
| x(米) | 20 | 40 | 60 | … |
| Y(米) | 5 | 20 | 45 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 9 |
| 16 |
| 1 |
| 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 初三數(shù)學(xué) 華東師大(新課標(biāo)2001/3年初審) 華東師大版 題型:044
已知,如圖,在平面直角坐標(biāo)系xOy中,拋物線l1的解析式為y=-x2,將拋物線l1平移后得到拋線物l2,若拋物線l2經(jīng)過點(diǎn)(0,2),且其頂點(diǎn)A的橫坐標(biāo)為最小正整數(shù).
(1)求拋物線l2的解析式;
(2)說明將拋物線l1如何平移得到拋物線l2;
(3)若將拋物線l2沿其對(duì)稱軸繼續(xù)上下平移,得到拋物線l3,設(shè)拋物線l3的頂點(diǎn)為B,直線OB與拋物線l3的另一個(gè)交點(diǎn)為C.當(dāng)OB=OC時(shí),求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:河南省期中題 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com