分析 (1)要證明FG是⊙O的切線只要證明OF⊥FG即可;
(2)先假設(shè)BE能與⊙O相切,則AE⊥BE,即∠AEB=90°.設(shè)DE的長為x,然后用x表示出CE的長,根據(jù)勾股定理可得出一個關(guān)于x的一元二次方程,若BE能與⊙O相切,那么方程的解即為DE的長;若方程無解,則說明BE不可能與⊙O相切.
解答
解:(1)連接OF、EF;
∵AE是⊙O的直徑,AF⊥EF,
∵四邊形ABCD是矩形,
∴∠DAB=∠D=90°,AB=CD,
∴四邊形ADEF是矩形,
∴AF=DE,
∴EC=BF,
∵E是CD的中點,
∴F是AB的中點,
∴OF∥BE,
∵FG⊥BE,
∴OF⊥FG,
∴FG為⊙O的切線.
(2)若BE能與⊙O相切,因AE是⊙O的直徑,則AE⊥BE,∠AEB=90°.
設(shè)DE=x,則EC=5-x.
由勾股定理得:AE2+EB2=AB2,
即(9+x2)+[(5-x)2+9]=25,
整理得x2-5x+9=0,
∵b2-4ac=25-36=-11<0,
∴該方程無實數(shù)根,
∴點E不存在,BE不能與⊙O相切.
點評 本題考查的是切線的判定,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.本題還要會熟練運用勾股定理作為相等關(guān)系列方程求解.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 100° | B. | 90° | C. | 80° | D. | 70° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ | B. | -a+2a=a | C. | (a3)3=a6 | D. | $\root{3}{27}$=-3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com