分析 (1)首先證明∠DAC=∠DCB=90°,將△BCF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)得到△BAM,只要證明△EBF≌△EBM,即可解決問(wèn)題.
(2)分兩種情形畫出圖形,寫出結(jié)論即可.
解答 (1)證明:∵DA=DC,BA=BC,
∴∠DAC=∠DCA,∠BAC=∠BCA,
∴∠DAB=∠DCB,
∵∠ADC+∠ABC=180°,
∴∠DAB=∠DCB=90°,
將△BCF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)得到△BAM.![]()
∵∠EBF=$\frac{1}{2}$∠ABC,
∴∠ABE+∠FBC=∠ABE+∠ABM=$\frac{1}{2}$∠ABC,
∴∠EBM=∠EBF,
在△EBF和△EBM中,
$\left\{\begin{array}{l}{EB=EB}\\{∠EBM=∠EBF}\\{BM=BF}\end{array}\right.$,
∴△EBF≌△EBM,
∴EF=EM,
∵EM=AE+AM=AE+CF,
∴EF=AE+CF.
(2)有類似的結(jié)論:①如圖2中,當(dāng)E在AD延長(zhǎng)線時(shí),F(xiàn)在DC延長(zhǎng)線上時(shí),EF=AE-CF.![]()
②如圖3中,當(dāng)E在DA延長(zhǎng)線時(shí),F(xiàn)在CD延長(zhǎng)線上時(shí),EF=CF-AE.![]()
點(diǎn)評(píng) 本題考查全等三角形的判定和性質(zhì)、等腰三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加輔助線,構(gòu)造全等三角形解決問(wèn)題,注意圖形發(fā)生改變,結(jié)論類似,這類題目屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com