分析 先求出該拋物線的對(duì)稱軸,然后根據(jù)對(duì)稱軸的位置即可求出a的取值范圍.
解答 解:拋物線的對(duì)稱軸為:x=$\frac{a}{3}$,
當(dāng)$\frac{a}{3}$≤-$\frac{1}{3}$時(shí),
即:a≤-1,
此時(shí)函數(shù)y在-$\frac{1}{3}$≤x≤$\frac{1}{3}$上,y隨著x的增大而增大,
∴x=-$\frac{1}{3}$,y=a2-5>0,
∴a<-$\sqrt{5}$或a>$\sqrt{5}$
∴a<-$\sqrt{5}$
當(dāng)-$\frac{1}{3}$<$\frac{a}{3}$<$\frac{1}{3}$時(shí),
即:-1<a<1,
∴此時(shí)-$\frac{1}{3}$≤x≤$\frac{1}{3}$時(shí),y>0恒成立,只需要△<0即可,
∴△36a2-36(a2-2a-6)<0,
解得:a<-3
∴此時(shí)a無解,此情況不存在;
當(dāng)$\frac{a}{3}$≥$\frac{1}{3}$時(shí),
即:a≥1,
此時(shí)函數(shù)y在-$\frac{1}{3}$≤x≤$\frac{1}{3}$上,y隨著x的增大而減少,
∴x=$\frac{1}{3}$,y=a2-4a-5>0,
∴a<-1或a>5
∴a>5
綜上所述,a<-$\sqrt{5}$或a>5時(shí),-$\frac{1}{3}$≤x≤$\frac{1}{3}$時(shí),y>0恒成立,
故答案為:a<-$\sqrt{5}$或a>5
點(diǎn)評(píng) 本題考查二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練運(yùn)用二次函數(shù)的圖象,本題屬于中等題型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 打開電視,它正在播廣告是必然事件 | |
| B. | 要考察一個(gè)班級(jí)中的學(xué)生對(duì)建立生物角的看法適合用抽樣調(diào)查 | |
| C. | 在抽樣調(diào)查過程中,樣本容量越大,對(duì)總體的估計(jì)就越準(zhǔn)確 | |
| D. | 甲、乙兩人射中環(huán)數(shù)的方差分別為S甲2=2,S乙2=4,說明乙的射擊成績(jī)比甲穩(wěn)定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| x | … | -3 | -2 | -1 | 0 | $\frac{1}{2}$ | 1 | 3 | $\frac{7}{2}$ | 4 | 5 | 6 | 7 | … |
| y | … | $\frac{6}{25}$ | $\frac{3}{8}$ | $\frac{2}{3}$ | $\frac{3}{2}$ | $\frac{8}{3}$ | 6 | 6 | $\frac{8}{3}$ | $\frac{3}{2}$ | $\frac{2}{3}$ | $\frac{3}{8}$ | m | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{a+1}{a+2}$ | C. | $\frac{a+1}{a}$ | D. | $\frac{a}{a+1}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | π-3.14=0 | B. | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ | C. | a3÷a=a2 | D. | a•a=2a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2.5×105 | B. | 2.5×106 | C. | 2.5×10-5 | D. | 2.5×10-6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com