分析 將A坐標(biāo)代入反比例解析式求出k的值即可;過(guò)點(diǎn)C作CN⊥y軸,垂足為N,延長(zhǎng)BA,交y軸于點(diǎn)M,得到CN與BM平行,進(jìn)而確定出三角形OCN與三角形OBM相似,根據(jù)C為OB的中點(diǎn),得到相似比為1:2,確定出三角形OCN與三角形OBM面積比為1:4,利用反比例函數(shù)k的意義確定出三角形OCN與三角形AOM面積,根據(jù)相似三角形面積之比為1:4,求出三角形AOB面積即可.
解答
解:∵點(diǎn)A(2,3)在雙曲線y=$\frac{k}{x}$(x>0)上,
∴k=2×3=6.
過(guò)點(diǎn)C作CN⊥y軸,垂足為N,延長(zhǎng)BA,交y軸于點(diǎn)M,
∵AB∥x軸,
∴BM⊥y軸,
∴MB∥CN,
∴△OCN∽△OBM,
∵C為OB的中點(diǎn),即$\frac{OC}{OB}$=$\frac{1}{2}$,
∴$\frac{{S}_{△OCN}}{{S}_{△OBM}}$=($\frac{1}{2}$)2,
∵A,C都在雙曲線y=$\frac{6}{x}$上,
∴S△OCN=S△AOM=3,
由$\frac{3}{3+{S}_{△AOB}}$=$\frac{1}{4}$,
得:S△AOB=9,
則△AOC面積=$\frac{1}{2}$S△AOB=$\frac{9}{2}$.
故答案是:$\frac{9}{2}$.
點(diǎn)評(píng) 此題屬于反比例函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法確定函數(shù)解析式,坐標(biāo)與圖形性質(zhì),相似三角形的判定與性質(zhì),以及反比例函數(shù)k的意義,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x軸上所有點(diǎn)的縱坐標(biāo)都相等 | |
| B. | y軸上的所有點(diǎn)的橫坐標(biāo)都相等 | |
| C. | 原點(diǎn)的坐標(biāo)是(0,0) | |
| D. | 坐標(biāo)分別為(-1,2)與(2,-1)的點(diǎn)是同一個(gè)點(diǎn) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 12xy | B. | -12xy | C. | 24xy | D. | -24xy |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 對(duì)角線互相垂直且相等的四邊形是菱形 | |
| B. | 對(duì)角線相等的平行四邊形是矩形 | |
| C. | 對(duì)角線互相平分且相等的四邊形是正方形 | |
| D. | 對(duì)角線相等的四邊形是矩形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com