分析:(1)由A、B、C三點的坐標,根據(jù)平面直角坐標系中兩點之間的距離公式即可求出AB、BC的長度;
(2)①先由圖2得出點P在AB上運動的時間為4秒,根據(jù)速度=路程÷時間得出點P的運動速度,再根據(jù)時間=路程÷速度即可求出點P從點A運動到點C所需要的時間;
②如圖①,過點P作PE⊥x軸于點E,PF⊥y軸于點F.先由平行線的性質(zhì)得出∠1=∠BAC,再解Rt△AEP,得出AE=3t,PE=4t,則P(20-3t,4t),又OQ=OD+DQ=10+5t,根據(jù)三角形的面積公式得出S與t之間的函數(shù)關(guān)系式為S=-
t
2+35t+100,然后根據(jù)二次函數(shù)的性質(zhì)求出當t=
時,S取最大值時,進而求出點P的坐標;
③在點P沿A→B→C的方向勻速運動過程中,分兩種情況進行討論:
(Ⅰ)當點P在AB邊上運動時,如圖①,過點P作PF⊥y軸于點F,得到P(20-3t,4t),Q(0,10+5t),F(xiàn)(0,4t),0≤t≤4,由射影定理得出PF
2=OF•FQ,據(jù)此列出方程(20-3t)
2=4t(10+5t-4t),解方程求出t的值;
(Ⅱ)當點P在BC邊上運動時,如圖③,過點P作PE⊥x軸于點E,PF⊥y軸于點F.過點B作MN⊥于x軸于點M,交PF于點N.求出P(4t-8,3t+4),Q(0,10+5t),F(xiàn)(0,3t+4),4≤t≤7,由射影定理得出PF
2=OF•FQ,據(jù)此列出方程(4t-8)
2=(3t+4)(10+5t-3t-4),解方程求出t的值.
解答:解:(1)∵A(20,0),B(8,16),C(20,25),
∴AB=
=20,
BC=
=15;
(2)①由圖2可知,點P在AB上運動的時間為4秒,
∴點P的運動速度為20÷4=5個單位/秒,
∴點P從點A運動到點C所需要的時間為(20+15)÷5=7秒;
②如圖①,過點P作PE⊥x軸于點E,PF⊥y軸于點F.
∵AC⊥x軸,
∴PE∥AC,
∴∠1=∠BAC.
∵在Rt△ABC中,∠B=90°,AB=20,BC=15,AC=25,
∴sin∠BAC=
=
=
,cos∠BAC=
=
=
.

∵在Rt△AEP中,∠AEP=90°,AP=5t,
∴AE=AP•sin∠1=5t•
=3t,PE=AP•cos∠1=5t•
=4t,
∴OE=OA-AE=20-3t,
∴P(20-3t,4t).
∵OQ=OD+DQ=10+5t,
∴△OPQ的面積S=
OQ•PF=
(10+5t)(20-3t)=-
t
2+35t+100,
即S與t之間的函數(shù)關(guān)系式為S=-
t
2+35t+100,
∵S=-
t
2+35t+100=-
(t-
)
2+
,
∴當t=
時,S取最大值時,此時點P的坐標為(13,
);
③在點P沿A→B→C的方向勻速運動過程中,使∠OPQ=90°的點P有1個.
(Ⅰ)當點P在AB邊上運動時,如圖①,過點P作PF⊥y軸于點F.
由上可知,P(20-3t,4t),Q(0,10+5t),F(xiàn)(0,4t),0≤t≤4,
∵∠OPQ=90°,∴PF
2=OF•FQ,即(20-3t)
2=4t(10+5t-4t),
解得t=16±4
,其中0≤16-4
≤4,
∴當點P在AB邊上運動時,使∠OPQ=90°的點P有1個;

(Ⅱ)同理當點P在BC邊上運動時,如圖③,過點P作PE⊥x軸于點E,PF⊥y軸于點F.過點B作MN⊥于x軸于點M,交PF于點N,則MN⊥PF.
∵MN∥AC,
∴∠MBA=∠BAC,
∵∠ABC=90°,∠BNP=90°
∴∠MBA=∠BPN=90°-∠PBN,
∴∠BPN=∠BAC.
∵在Rt△BNP中,∠BNP=90°,BP=5t-20,
∴BN=BP•sin∠BPN=(5t-20)•
=3t-12,PN=BP•cos∠BPN=(5t-20)•
=4t-16,
∴PF=FN+PN=8+4t-16=4t-8,OF=MN=BM+BN=16+3t-12=3t+4,
∴P(4t-8,3t+4),Q(0,10+5t),F(xiàn)(0,3t+4),4≤t≤7,
∵∠OPQ=90°,∴PF
2=OF•FQ,即(4t-8)
2=(3t+4)(10+5t-3t-4),
解得t=
,均不符合4≤t≤7,
∴當點P在BC邊上運動時,使∠OPQ=90°的點P有0個.
綜上所述,符合題意的點P有1個,t=16-4
.