分析 (1)由于△ACD為等邊三角形,則AC=AD,∠DAC=60°,則作∠BAE=60°,再截取AE=AB,于是△ACE可由△ADB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到;
(2)連結(jié)BE,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得BD=CE=6,AE=AB,∠BAE=60°,可判斷△ABE為等邊三角形,所以∠ABE=60°,BE=AB,加上∠ABC=30°,所以∠EBC=90°,然后利用勾股定理計(jì)算出BE.從而得到AB的長(zhǎng).
解答 解:(1)如圖,△ACE為所作;![]()
(2)連結(jié)BE,如圖,
∵△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到△AEC,
∴BD=CE=6,AE=AB,∠BAE=60°,
∴△ABE為等邊三角形,
∴∠ABE=60°,BE=AB,
而∠ABC=30°,
∴∠EBC=90°,
在Rt△ABE中,BE=$\sqrt{C{E}^{2}-B{C}^{2}}$=$\sqrt{{6}^{2}-{4}^{2}}$=2$\sqrt{5}$,
∴AB=2$\sqrt{5}$.
點(diǎn)評(píng) 本題考查了作圖-旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對(duì)應(yīng)角都相等都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對(duì)應(yīng)點(diǎn),順次連接得出旋轉(zhuǎn)后的圖形.也考查了等邊三角形的判定與性質(zhì).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a2•a3=a6 | B. | (a-b)2=a2-b2 | C. | -(3ab3)2=-6a2b6 | D. | -2x-2=-$\frac{2}{x^2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com