分析 (1)連接OE,根據(jù)切線性質(zhì)得OE⊥DE,與已知中的ED⊥AC得平行,由此得∠1=∠C,再根據(jù)同圓的半徑相等得∠1=∠B,可得出三角形為等腰三角形;
(2)通過作輔助線構(gòu)建矩形OGDE,再設(shè)與半徑有關(guān)系的邊OG=x,通過AB=AC列等量關(guān)系式,可求得結(jié)論.
解答
解:(1)△ABC是等腰三角形,理由是:
如圖1,連接OE,
∵DE是⊙O的切線,
∴OE⊥DE,
∵ED⊥AC,
∴AC∥OE,
∴∠1=∠C,
∵OB=OE,
∴∠1=∠B,
∴∠B=∠C,
∴△ABC是等腰三角形;
(2)如圖2,過點O作OG⊥AC,垂足為G,則得四邊形OGDE是矩形,
∵△ABC是等腰三角形,
∴∠B=∠C=75°,
∴∠A=180°-75°-75°=30°,
設(shè)OG=x,則OA=OB=OE=2x,AG=$\sqrt{3}$x,
∴DG=OE=2x,
根據(jù)AC=AB得:4x=$\sqrt{3}$x+2x+2-$\sqrt{3}$,
x=1,
∴OE=OB=2,
在直角△OEF中,∠EOF=∠A=30°,
cos30=$\frac{OE}{OF}$,OF=$\frac{2}{cos30}$=2÷$\frac{\sqrt{3}}{2}$=$\frac{4\sqrt{3}}{3}$,
∴BF=$\frac{4\sqrt{3}}{3}$-2,⊙O的半徑為2.
點評 本題考查了切線的性質(zhì),由定理可知,若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系,由此得出平行和角的關(guān)系,根據(jù)兩個角相等的三角形是等腰三角形可得△ABC是等腰三角形;第二問運用了直角三角形30°角的性質(zhì)及等腰三角形和矩形的有關(guān)性質(zhì),關(guān)鍵是找出恰當?shù)牡攘筷P(guān)系式:AC=AB,設(shè)未知數(shù),列關(guān)于x的一元一次方程得出結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x≥-2 | B. | x≥-2且x≠0 | C. | x≠0 | D. | x>0且x≠-2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 數(shù)與代數(shù) | 空間與圖形 | 統(tǒng)計與概率 | 綜合與實踐 | |
| 學(xué)生甲 | 90 | 93 | 89 | 90 |
| 學(xué)生乙 | 94 | 92 | 94 | 86 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com