| x | … | 0 | 1 | 2 | 3 | 4 | 5 | … |
| y | … | 4 | 1 | 0 | 1 | 4 | 9 | … |
分析 (1)當(dāng)x=1或3時(shí),y=1,根據(jù)拋物線的對稱性可知,拋物線的對稱軸為x=2,得出頂點(diǎn)坐標(biāo)為(2,0).
(2)根據(jù)待定系數(shù)法求得解析式,然后根據(jù)平移的規(guī)律即可求得;
(3)先將點(diǎn)P1、P2、P3的坐標(biāo)代入y=(x-2)2,得到y(tǒng)1=(m-2)2,y2=(m-1)2,y3=m2,再根據(jù)不等式的性質(zhì)及m<-3得出y1>y2>y3>0,m+3<0,m-1<0,然后判斷y2+y3-y1>0,即y2+y3>y1,根據(jù)三角形三邊關(guān)系定理即可得出當(dāng)m<-3時(shí),y1、y2、y3的值一定能作為同一個(gè)三角形三邊的長.
解答 解:(1)根據(jù)拋物線的對稱性,觀察表格可知,
拋物線的對稱軸為x=2,頂點(diǎn)坐標(biāo)為(2,0).
(2)設(shè)拋物線為y=a(x-2)2,
代入(1,1)解得,a=1,
∴拋物線為y=(x-2)2,
由“左加右減”的原則可知,將拋物線y=(x-2)2向右平移3個(gè)單位所得的拋物線的表達(dá)式是y=(x-2-3)2,即y=(x-5)2.
(3)當(dāng)m<-3時(shí),y1、y2、y3的值一定能作為同一個(gè)三角形三邊的長.理由如下:
∵y=(x-2)2,
∴y1=(m-2)2,y2=(m-1)2,y3=m2,
∵m<-3,
∴y1>y2>y3>0,m+3<0,m-1<-4<0,
∵y2+y3-y1=(m-1)2+m2-(m-2)2=m2+2m-3=(m+3)(m-1),
∴y2+y3-y1>0,
∴y2+y3>y1,
∴當(dāng)m<-3時(shí),y1、y2、y3的值一定能作為同一個(gè)三角形三邊的長.
故答案為(2,0);y=(x-5)2.
點(diǎn)評 本題主要考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,用待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)的性質(zhì),函數(shù)圖象的平移規(guī)律,不等式的性質(zhì),三角形三邊關(guān)系定理等知識,綜合性較強(qiáng),難度適中.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4.6×103元 | B. | 46×102元 | C. | 4.6×1011元 | D. | 0.46×1012元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-x+y)(-x-y) | B. | (a-2b)(2b-a) | C. | (a-b)(a+b)(a2+b2) | D. | (a-b+c)(a+b-c) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com