分析 (1)根據(jù)△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O.求證∠DBO=∠OBC,∠ECO=∠BCO,再利用兩直線平行內(nèi)錯(cuò)角相等,求證出∠DOB=∠DBO,∠COE=∠BCO,即BD=DO,OE=CE,然后利用等量代換即可求出結(jié)論;
(2)由(1)證得DE=BD+CE,等量代換即可得到結(jié)論.
解答 解:(1)∵∠ABC和∠ACB的平分線相交于點(diǎn)O,
∴∠DBO=∠OBC,∠ECO=∠BCO,
∵DE∥BC,交AB于點(diǎn)D,交AC于點(diǎn)E.
∴∠DOB=∠DBO,∠COE=∠ECO,
∴BD=DO,OE=CE,
∴DE=BD+CE.![]()
故答案為:DE=BD+CE;
(2)由(1)證得DE=BD+CE,
∵△ADE的周長=AD+DE=AE=AD+BD+CE+AE=AB+AC,
∵AB=7,AC=5,
∴△ADE的周長=12.
故答案為:12.
點(diǎn)評 本題主要考查了平行線的性質(zhì)以及角平分線的性質(zhì)和等腰三角形的判定及性質(zhì)問題,能夠熟練掌握等腰三角形的判定和性質(zhì)是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2,2 | B. | -3,2 | C. | 2,3 | D. | 3,2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com