分析 求出△OAD是等邊三角形,推出∠OAD=∠ODA=60°,求出∠DAB=∠B=30°,求出∠OAB=90°,求出△OAB和扇形OAD的面積,即可求出答案.
解答 解:直線AB與⊙O的位置關(guān)系是相切,
理由是:∵AO⊥CD,
∴∠OAD=90°,
∵∠ODC=30°,
∴∠DOA=60°,
∵OA=OD,
∴△OAD是等邊三角形,
∴∠OAD=∠ODA=60°,
∵AD=BD,
∴∠DAB=∠B,
∵∠ODA=∠B+∠DAB,
∴∠DAB=∠B=30°,
∴∠OAB=30°+60°=90°,
∵∠B=30°,∠OAB=90°,OA=2,
∴OB=2OA=4,由勾股定理得:AB=2$\sqrt{3}$,
∴陰影部分的面積S=S△OAB-S扇形OAD=$\frac{1}{2}$×2$\sqrt{3}$×2-$\frac{60π×{2}^{2}}{360}$=2$\sqrt{3}$-$\frac{2}{3}$π.
故答案為:2$\sqrt{3}$-$\frac{2}{3}$π.
點(diǎn)評(píng) 本題考查了等邊三角形的性質(zhì)和判定,等腰三角形的性質(zhì),三角形的外角性質(zhì),扇形的面積,三角形的面積等知識(shí)點(diǎn)的應(yīng)用,主要考查學(xué)生綜合運(yùn)用機(jī)密性推理和計(jì)算的能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3個(gè) | B. | 2個(gè) | C. | 1個(gè) | D. | 0個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x≤$\frac{4}{5}$ | B. | x≥$\frac{4}{5}$ | C. | x≤$\frac{5}{4}$ | D. | x≥$\frac{5}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{10}}{10}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{3\sqrt{10}}{10}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| 居民(戶數(shù)) | 1 | 2 | 3 | 4 |
| 月用電量(度/戶) | 30 | 42 | 50 | 52 |
| A. | 42 | B. | 46 | C. | 50 | D. | 52 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 線OA上 | B. | 線OB上 | C. | 線OC上 | D. | 線OF上 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com