欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.
【問(wèn)題情境】
將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)M,DE⊥BC于點(diǎn)N,試判斷線段OM與ON的數(shù)量關(guān)系,并說(shuō)明理由.
【探究展示】
小宇同學(xué)展示出如下正確的解法
解:OM=ON,
證明如下:
連接CO,則CO是AB邊上的中線
∵CA=CB,
∴CO是∠ACB的角平分線.(依據(jù)1)
∵OM⊥AC,ON⊥BC,
∴OM=ON(依據(jù)2)
【反思交流】
(1)上述證明過(guò)程中的“依據(jù)1”和“依據(jù)2”分別是指
依據(jù)1:等腰三角形三線合一(或等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合)
依據(jù)2:角平分線上的點(diǎn)到角的兩邊距離相等
(2)你有與小宇不同的思考方法嗎?請(qǐng)寫出你的證明過(guò)程.
【拓展延伸】
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點(diǎn)D落在BA的延長(zhǎng)線上,F(xiàn)D的延長(zhǎng)線與CA的延長(zhǎng)線垂直相交于點(diǎn)M,BC的延長(zhǎng)線與DE垂直相交于點(diǎn)N,連接OM,ON,試判斷線段OM,ON的數(shù)量關(guān)系與位置關(guān)系,并寫出證明過(guò)程.

分析 (1)根據(jù)等腰三角形的性質(zhì)和角平分線性質(zhì)得出即可;
(2)證△OMA≌△ONB(AAS),即可得出答案;
(3)求出矩形DMCN,得出DM=CN,△MOC≌△NOB(SAS),推出OM=ON,∠MOC=∠NOB,得出∠MOC-∠CON=∠NOB-∠CON,求出∠MON=∠BOC=90°,即可得出答案.

解答 (1)解:
依據(jù)1:等腰三角形三線合一(或等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合);
依據(jù)2:角平分線上的點(diǎn)到角的兩邊距離相等.
 
(2)證明:∵CA=CB,
∴∠A=∠B,
∵O是AB的中點(diǎn),
∴OA=OB.
∵DF⊥AC,DE⊥BC,
∴∠AMO=∠BNO=90°,
∵在△OMA和△ONB中
$\left\{\begin{array}{l}{∠A=∠B}\\{OA=OB}\\{∠AMO=∠BNO}\end{array}\right.$,
∴△OMA≌△ONB(AAS),
∴OM=ON. 

(3)解:OM=ON,OM⊥ON.
理由如下:
如圖2,連接OC,
∵∠ACB=∠DNB,∠B=∠B,
∴△BCA∽△BND,
∴$\frac{AC}{DN}$=$\frac{BC}{BN}$,
∵AC=BC,
∴DN=NB.
∵∠ACB=90°,
∴∠NCM=90°=∠DNC,
∴MC∥DN,
又∵DF⊥AC,
∴∠DMC=90°,
即∠DMC=∠MCN=∠DNC=90°,
∴四邊形DMCN是矩形,
∴DN=MC,
∵∠B=45°,∠DNB=90°,
∴∠3=∠B=45°,
∴DN=NB,
∴MC=NB,
∵∠ACB=90°,O為AB中點(diǎn),AC=BC,
∴∠1=∠2=45°=∠B,OC=OB(斜邊中線等于斜邊一半),
在△MOC和△NOB中
$\left\{\begin{array}{l}{OC=OB}\\{∠1=∠B}\\{CM=BN}\end{array}\right.$,
∴△MOC≌△NOB(SAS),
∴OM=ON,∠MOC=∠NOB,
∴∠MOC-∠CON=∠NOB-∠CON,
即∠MON=∠BOC=90°,
∴OM⊥ON.

點(diǎn)評(píng) 本題考查了幾何變換綜合、等腰三角形的性質(zhì)和判定、全等三角形的性質(zhì)和判定、矩形的性質(zhì)和判定、角平分線性質(zhì)等知識(shí)點(diǎn)的應(yīng)用,培養(yǎng)了學(xué)生運(yùn)用定理進(jìn)行推理的能力,正確應(yīng)用全等三角形的判定與性質(zhì)是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.分解因式:(a-2b)2-b2=(a-b)(a-3b).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

11.一組數(shù)據(jù)5、6、9、9、8的中位數(shù)是8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某蔬菜經(jīng)銷商去蔬菜生產(chǎn)基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時(shí),每千克批發(fā)價(jià)是5元;若超過(guò)60千克時(shí),批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.
(1)根據(jù)題意,填寫如表:
蔬菜的批發(fā)量(千克)25607590
所付的金額(元)125300300360
(2)經(jīng)調(diào)查,該蔬菜經(jīng)銷商銷售該種蔬菜的日銷售量y(千克)與零售價(jià)x(元/千克)是一次函數(shù)關(guān)系,其圖象如圖,求出y與x之間的函數(shù)關(guān)系式;
(3)若該蔬菜經(jīng)銷商每日銷售此種蔬菜不低于75千克,且當(dāng)日零售價(jià)不變,那么零售價(jià)定為多少時(shí),該經(jīng)銷商銷售此種蔬菜的當(dāng)日利潤(rùn)最大?最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,正方形ABCD的邊長(zhǎng)為3cm,P,Q分別從B,A出發(fā)沿BC,AD方向運(yùn)動(dòng),P點(diǎn)的運(yùn)動(dòng)速度是1cm/秒,Q點(diǎn)的運(yùn)動(dòng)速度是2cm/秒,連接A,P并過(guò)Q作QE⊥AP垂足為E.
(1)求證:△ABP∽△QEA;
(2)當(dāng)運(yùn)動(dòng)時(shí)間t為何值時(shí),△ABP≌△QEA;
(3)設(shè)△QEA的面積為y,用運(yùn)動(dòng)時(shí)刻t表示△QEA的面積y(不要求考t的取值范圍).(提示:解答(2)(3)時(shí)可不分先后)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖:用一段長(zhǎng)為30m的籬笆圍成一邊靠墻的矩形菜園,墻長(zhǎng)為18m,設(shè)菜園的寬AB為xm,面積為Sm2
(1)求S與x的函數(shù)關(guān)系式;并直接寫出自變量x的取值范圍;
(2)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),菜園的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.計(jì)算
(1)(-2.48)+(+4.33)+(-7.52)+(-4.33)
(2)(+3$\frac{5}{6}$)+(-5$\frac{1}{7}$)+(-2$\frac{1}{6}$)+(-32$\frac{6}{7}$)
(3)$\frac{4}{5}$-(+$\frac{5}{6}$)-(+$\frac{3}{5}$)+$\frac{1}{6}$         
(4)-14-$\frac{1}{6}$×[2-(-3)2].

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.小明家承包了一個(gè)矩形魚(yú)池,已知其面積為48m2,其對(duì)角線長(zhǎng)為10m,為建柵欄,要計(jì)算這個(gè)矩形魚(yú)池的周長(zhǎng),請(qǐng)幫助小明算一算這個(gè)矩形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.隨著手機(jī)普及率的提高,有些人開(kāi)始過(guò)分依賴手機(jī),一天中使用手機(jī)時(shí)間過(guò)長(zhǎng)而形成了“手機(jī)癮”,某校學(xué)生會(huì)為了了解本校初三年級(jí)的手機(jī)使用情況,隨機(jī)調(diào)查了部分學(xué)生的手機(jī)使用時(shí)間,將調(diào)查結(jié)果分成五類:
A、基本不用;B、平均每天使用1~2h;C、平均每天使用2~4h;D、平均每天使用4~6h;E、平均每天使用超過(guò)6h,并根據(jù)統(tǒng)計(jì)結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)學(xué)生會(huì)一共調(diào)查了多少名學(xué)生?
(2)此次調(diào)查的學(xué)生中屬于E類的學(xué)生有5人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若一天中手機(jī)使用時(shí)間超過(guò)6h,則患有嚴(yán)重的“手機(jī)癮”,該校初三學(xué)生共有900人,請(qǐng)估計(jì)該校初三年級(jí)中患有嚴(yán)重的“手機(jī)癮”的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案