科目: 來源: 題型:
(1)如圖1,紙片□ABCD中,AD=5,S□ABCD=15,過點A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE′ 的位置,拼成四邊形AEE′D,則四邊形AEE′D的形狀為( )
A.平行四邊形 B.菱形 C.矩形 D.正方形
(2)如圖2,在(1)中的四邊形紙片AEE′D中,在EE′上取一點F,使EF=4,剪下△AEF,將它平移至△DE′F′ 的位置,拼成四邊形AFF′D.
① 求證四邊形AFF′D是菱形;
② 求四邊形AFF′D兩條對角線的長.
![]()
![]()
查看答案和解析>>
科目: 來源: 題型:
如圖,已知在四邊形ABCD中,AB=20cm,BC=15 cm,CD=7 cm,AD=24 cm,∠ABC=90°。猜想∠A與∠C關(guān)系并加以證明.
![]()
![]()
查看答案和解析>>
科目: 來源: 題型:
如圖,在邊長為10的菱形ABCD中,對角線BD=16,點O是直線BD上的動點,OE⊥AB于E,OF⊥AD于F.
(1)對角線AC的長是 ,菱形ABCD的面積是 ;
(2)如圖1,當點O在對角線BD上運動時,OE+OF的值是否發(fā)生變化?請說明理由;
(3)如圖2,當點O在對角線BD的延長線上時,OE+OF的值是否發(fā)生變化?若不變,請說明理由,若變化,請?zhí)骄縊E、OF之間的數(shù)量關(guān)系,并說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
如圖1,在
中,AB=AC,∠ABC =
,D是BC邊上一點,以AD為邊作
,使AE=AD,
+
=180°.
![]()
(1)直接寫出∠ADE的度數(shù)(用含
的式子表示);
(2)以AB,AE為邊作平行四邊形ABFE,
①如圖2,若點F恰好落在DE上,求證:BD=CD;
②如圖3,若點F恰好落在BC上,求證:BD=CF.
查看答案和解析>>
科目: 來源: 題型:
如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
![]()
![]()
(1)求證:D是BC的中點;
(2)如果AB=AC,試判斷四邊形AFBD是什么四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),則根據(jù)勾股定理,得a2+b2=c2.若△ABC不是直角三角形,如圖(2)和(3),請你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com