已知函數(shù)
,設(shè)曲線
在與
軸交點處的切線為
,
為
的導(dǎo)函數(shù),滿足
.
(1)求
的單調(diào)區(qū)間.
(2)設(shè)
,
,求函數(shù)
在
上的最大值;
(1)(2)
【解析】
試題分析:(1)
,![]()
,
函數(shù)
的圖像關(guān)于直線
對稱,則
.
直線
與
軸的交點為
,![]()
,且
,
即
,且
,解得
,
.
則
.
故
,所以f(x)在R上單調(diào)遞增. ……4分
(2)![]()
其圖像如圖所示.當(dāng)
時,
,
根據(jù)圖像得:
![]()
(。┊(dāng)
時,
最大值為
;
(ⅱ)當(dāng)
時,
最大值為
;
(ⅲ)當(dāng)
時,
最大值為
. ……10分
考點:本小題主要考查導(dǎo)數(shù)的應(yīng)用.
點評:用導(dǎo)數(shù)可以解決函數(shù)中求最值,單調(diào)性,極值等問題,要注意函數(shù)的定義域.分類討論時,要注意分類標準要不重不漏.
科目:高中數(shù)學(xué) 來源:2014屆江蘇省啟東市高三上學(xué)期第一次檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
,設(shè)曲線
在與
軸交點處的切線為
,
為
的導(dǎo)函數(shù),滿足
.
(1)求
;
(2)設(shè)
,
,求函數(shù)
在
上的最大值;
(3)設(shè)
,若對于一切
,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇省啟東市高三上學(xué)期第一次檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
,設(shè)曲線
在與
軸交點處的切線為
,
為
的導(dǎo)函數(shù),滿足
.
(1)求
;
(2)設(shè)
,
,求函數(shù)
在
上的最大值;
(3)設(shè)
,若對于一切
,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省深圳市高三第一次調(diào)研理科數(shù)學(xué) 題型:解答題
(本小題滿分14分)
已知函數(shù)
,設(shè)曲線
在與
軸交點處的切線為
,
為
的導(dǎo)函數(shù),滿足
.
(1)求
;
(2)設(shè)
,
,求函數(shù)
在
上的最大值;
(3)設(shè)
,若對一切
,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)
,設(shè)曲線
在與x軸交點處的切線為
,
為
的導(dǎo)函數(shù),滿足
.
(1)求
;
(2)設(shè)
,m>0,求函數(shù)
在[0,m]上的最大值;
(3)設(shè)
,若對于一切
,不等式
恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com