已知函數(shù)
,設(shè)曲線
在與x軸交點(diǎn)處的切線為
,
為
的導(dǎo)函數(shù),滿足
.
(1)求
;
(2)設(shè)
,m>0,求函數(shù)
在[0,m]上的最大值;
(3)設(shè)
,若對于一切
,不等式
恒成立,求實(shí)數(shù)t的取值范圍.
(1)
,
∵
,∴函數(shù)
的圖象關(guān)于直線x=1對稱b=-1,-----2分
∵曲線
在與x軸交點(diǎn)處的切線為
,∴切點(diǎn)為(3,0),
∴
,解得c=1,d=-3,則
----------------5分
(2)∵
,
∴
--------------------------7分
當(dāng)0<m≤
時,![]()
當(dāng)
<m≤
時,
,
當(dāng)m>
時,
,
綜上
----------------------------------10分
(3)
,
,![]()
當(dāng)
時,|2x+1|=2x+1,所以不等式等價于
恒成立,
解得
,且x≠t,--------------------------------------------13分
由
,得
,
,所以
,
又x≠t,∵
,∴所求的實(shí)數(shù)t的的取值范圍是
-------16分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆江蘇省啟東市高三上學(xué)期第一次檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
,設(shè)曲線
在與
軸交點(diǎn)處的切線為
,
為
的導(dǎo)函數(shù),滿足
.
(1)求
;
(2)設(shè)
,
,求函數(shù)
在
上的最大值;
(3)設(shè)
,若對于一切
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇省啟東市高三上學(xué)期第一次檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
,設(shè)曲線
在與
軸交點(diǎn)處的切線為
,
為
的導(dǎo)函數(shù),滿足
.
(1)求
;
(2)設(shè)
,
,求函數(shù)
在
上的最大值;
(3)設(shè)
,若對于一切
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三下學(xué)期回頭考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
,設(shè)曲線
在與
軸交點(diǎn)處的切線為
,
為
的導(dǎo)函數(shù),滿足
.
(1)求
的單調(diào)區(qū)間.
(2)設(shè)
,
,求函數(shù)
在
上的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省深圳市高三第一次調(diào)研理科數(shù)學(xué) 題型:解答題
(本小題滿分14分)
已知函數(shù)
,設(shè)曲線
在與
軸交點(diǎn)處的切線為
,
為
的導(dǎo)函數(shù),滿足
.
(1)求
;
(2)設(shè)
,
,求函數(shù)
在
上的最大值;
(3)設(shè)
,若對一切
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com