【題目】如圖所示是某企業(yè)2010年至2016年污水凈化量(單位: 噸)的折線(xiàn)圖.
![]()
注: 年份代碼1-7分別對(duì)應(yīng)年份2010-2016.
(1)由折線(xiàn)圖看出,可用線(xiàn)性回歸模型擬合
和
的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;
(2)建立
關(guān)于
的回歸方程,預(yù)測(cè)
年該企業(yè)污水凈化量;
(3)請(qǐng)用數(shù)據(jù)說(shuō)明回歸方程預(yù)報(bào)的效果.
附注: 參考數(shù)據(jù):
;
參考公式:相關(guān)系數(shù)
,回歸方程
中斜率和截距的最。
二乘法估汁公式分別為
;
反映回歸效果的公式為:
,其中
越接近于
,表示回歸的效果越好.
【答案】(1) 見(jiàn)解析;(2) 預(yù)測(cè)
年該企業(yè)污水凈化量約為
噸;(3) 回歸方程預(yù)測(cè)的效果是良好的.
【解析】試題分析:(1)先求
,再將折線(xiàn)圖中的數(shù)據(jù)代入?yún)⒖脊娇傻孟嚓P(guān)系數(shù),最后根據(jù)數(shù)值進(jìn)行判斷相關(guān)性, (2) 將折線(xiàn)圖中的數(shù)據(jù)代入?yún)⒖脊娇傻?/span>
,再根據(jù)線(xiàn)性回歸方程恒過(guò)
,解出
,最后求
所對(duì)應(yīng)函數(shù)值
,(3) 將折線(xiàn)圖中的數(shù)據(jù)代入?yún)⒖脊娇傻?/span>
,再根據(jù)數(shù)據(jù)說(shuō)明預(yù)測(cè)的效果.
試題解析:(1) 由折線(xiàn)圖中的數(shù)據(jù)和附注中的參考數(shù)據(jù)得,
,所以
.因?yàn)?/span>
與
的相關(guān)系數(shù)近似為
,說(shuō)明
與
的線(xiàn)性相關(guān)程度相當(dāng)大,從而可以用線(xiàn)性回歸模型擬合
與
的關(guān)系.
(2) 由
及(1)得
,
所以
關(guān)于
的回舊方程為:
, 將
年對(duì)應(yīng)的
代入得
,
所以預(yù)測(cè)
年該企業(yè)污水凈化量約為
噸.
(3) 因?yàn)?/span>
,所以“污水凈化量的差異” 有
是由年份引起的,這說(shuō)明回歸方程預(yù)測(cè)的效果是良好的.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分14分)
某公司經(jīng)銷(xiāo)某產(chǎn)品,第
天
的銷(xiāo)售價(jià)格為
(
為常數(shù))(元∕件),第
天的銷(xiāo)售量為
(件),且公司在第
天該產(chǎn)品的銷(xiāo)售收入為
元.
(1)求該公司在第
天該產(chǎn)品的銷(xiāo)售收入是多少?
(2)這
天中該公司在哪一天該產(chǎn)品的銷(xiāo)售收入最大?最大收入為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017銀川一中模擬】如圖,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=
CD=1.現(xiàn)以AD為一邊向梯形外作矩形ADEF,然后沿邊AD將矩形ADEF翻折,使平面ADEF與平面ABCD垂直.
(1)求證:BC⊥平面BDE;
(2)若點(diǎn)D到平面BEC的距離為
,求三棱錐F-BDE的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
,函數(shù)
.
(1)當(dāng)
時(shí),求
在
上的單調(diào)區(qū)間;
(2)設(shè)函數(shù)
,當(dāng)
有兩個(gè)極值點(diǎn)![]()
時(shí),總有
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的定義域?yàn)?/span>
,對(duì)任意實(shí)數(shù)
,都有
.
(1)若
,
,且
,求
,
的值;
(2)若
為常數(shù),函數(shù)
是奇函數(shù),
①驗(yàn)證函數(shù)
滿(mǎn)足題中的條件;
②若函數(shù)
求函數(shù)
的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:
喜愛(ài)打籃球 | 不喜愛(ài)打籃球 | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 50 |
已知在全部50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為
。
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了實(shí)現(xiàn)60萬(wàn)元的生源利潤(rùn)目標(biāo),準(zhǔn)備制定一個(gè)激勵(lì)招生人員的獎(jiǎng)勵(lì)方案:在生源利潤(rùn)達(dá)到5萬(wàn)元時(shí),按生源利潤(rùn)進(jìn)行獎(jiǎng)勵(lì),且資金y(單位:萬(wàn)元)隨生源利潤(rùn)x(單位:萬(wàn)元)的增加而增加,但資金總數(shù)不超過(guò)3萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)利潤(rùn)的20%.現(xiàn)有三個(gè)獎(jiǎng)勵(lì)模型:y=0.2x,y=log5x,y=1.02x,其中哪個(gè)模型符合該校的要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點(diǎn).
![]()
(1)求證:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值為
,求直線(xiàn)PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
在
處取得極值.
(1)求
的單調(diào)區(qū)間;
(2)若
在定義域內(nèi)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com