分析 由已知利用等差數(shù)列的通項公式列出方程組,由此求出首項和公差,從而能求出該數(shù)列的前三項.
解答 解:∵等差數(shù)列{an}的第4項比第2項大6,第1項與第5項的積為-32,
∴$\left\{\begin{array}{l}{({a}_{1}+3d)-({a}_{1}+d)=6}\\{{a}_{1}({a}_{1}+4d)=-32}\end{array}\right.$,
解得a1=-4,d=3,或a1=-8,d=3,
∴此數(shù)列的前三項為-4,-1,2或-8,-5,-2.
點評 本題考查數(shù)列的前3項的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ($\frac{5}{{e}^{4}}$+$\frac{1}{2\sqrt{e}}$,+∞) | B. | ($\frac{5}{{e}^{4}}$-$\frac{1}{2\sqrt{e}}$,+∞) | C. | ($\frac{5}{{e}^{4}}$+$\frac{1}{e}$,+∞) | D. | (-$\frac{1}{e}$,$\frac{5}{{e}^{4}}$) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com