【題目】已知橢圓
:
的上下兩個焦點分別為
,
,過點
與
軸垂直的直線交橢圓
于
、
兩點,
的面積為
,橢圓
的離心力為
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)已知
為坐標(biāo)原點,直線
:
與
軸交于點
,與橢圓
交于
,
兩個不同的點,若存在實數(shù)
,使得
,求
的取值范圍.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】(Ⅰ)根據(jù)題目條件,由橢圓焦點坐標(biāo)和對稱性計算
的面積,建立等式關(guān)系,結(jié)合關(guān)系式
,離心率計算公式,問題可得解;(Ⅱ)由題意,可分直線是否過原點,對截距
進(jìn)行分類討論,再利用橢圓對稱性、向量共線、直線與橢圓有交點等性質(zhì)、條件進(jìn)行運算即可.
試題解析:(Ⅰ)根據(jù)已知橢圓
的焦距為
,當(dāng)
時,
,
由題意
的面積為
,
由已知得
,∴
,∴
,
∴橢圓
的標(biāo)準(zhǔn)方程為
.
(Ⅱ)若
,則
,由橢圓的對稱性得
,即
,
∴
能使
成立.
若
,由
,得
,
因為
,
,
共線,所以
,解得
.
設(shè)
,
,由![]()
得
,
由已知得
,即
,
且
,
,
由
,得
,即
,∴
,
∴
,即
.
當(dāng)
時,
不成立,∴
,
∵
,∴
,即
,
∴
,解得
或
.
綜上所述,
的取值范圍為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌汽車的
店,對最近100份分期付款購車情況進(jìn)行統(tǒng)計,統(tǒng)計情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
頻數(shù) | 20 | 20 |
|
|
(1)若以上表計算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機抽取3為顧客,求事件
:“至多有1位采用分6期付款“的概率
;
(2)按分層抽樣方式從這100為顧客中抽取5人,再從抽取的5人中隨機抽取3人,記該店在這3人身上賺取的總利潤為隨機變量
,求
的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的長軸長為
,
為坐標(biāo)原點.
(1)求橢圓
的方程和離心率.
(2)設(shè)點
,動點
在
軸上,動點
在橢圓
上,且點
在
軸的右側(cè).若
,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條不重合的直線
和兩個不重合的平面
,若
,則下列四個命題:①若
,則
;②若
,則
; ③若
,則
;④若
,則
,其中正確命題的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的離心率為
,以橢圓的四個頂點為頂點的四邊形的面積為8.
(Ⅰ)求橢圓
的方程;
(Ⅱ)如圖,斜率為
的直線
與橢圓
交于
,
兩點,點
在直線
的左上方.若
,且直線
,
分別與
軸交于
,
點,求線段
的長度.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點
為極點,
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點
的極坐標(biāo)為
,曲線
的參數(shù)方程為
為參數(shù)).
(1)直線
過
且與曲線
相切,求直線
的極坐標(biāo)方程;
(2)點
與點
關(guān)于
軸對稱,求曲線
上的點到點
的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)
的圖象向左平移
個單位,得函數(shù)
的圖象(如圖) ,點
分別是函數(shù)
圖象上
軸兩側(cè)相鄰的最高點和最低點,設(shè)
,則
的值為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了選拔參加自行車比賽的選手,對自行車運動員甲、乙兩人在相同條件下進(jìn)行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息;
(2)估計甲、乙兩運動員的最大速度的平均數(shù)和方差,并判斷誰參加比賽更合適.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
是等邊三角形,邊長為4,
邊的中點為
,橢圓
以
,
為左、右兩焦點,且經(jīng)過
、
兩點。
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過點
且
軸不垂直的直線
交橢圓于
,
兩點,求證:直線
與
的交點在一條定直線上.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com