分析 (1)證明AC⊥PD.AC⊥BD,推出AC⊥平面PBD,然后證明平面EAC⊥平面PBD.
(2)連接OE,說明∠EOB即為二面角E-AC-B的平面角,過E作EH∥PD,交BD于點(diǎn)H,則EH⊥BD,在RT△EHO中,求解二面角E-AC-B的大小即可.
解答 解:(1)∵PD⊥平面ABCD,AC?平面ABCD,∴AC⊥PD.
∵AD=BD,∠BAD=60°,∴△ABD為正三角形,四邊形ABCD是菱形,
∴AC⊥BD,又PD∩BD=D,∴AC⊥平面PBD,
而AC?平面EAC,∴平面EAC⊥平面PBD.
(2)如圖,連接OE,又(1)可知EO⊥AC,又AC⊥BD,
∴∠EOB即為二面角E-AC-B的平面角,
過E作EH∥PD,交BD于點(diǎn)H,則EH⊥BD,
又$PE=2EB,AB=2,PD=\sqrt{3},EH=\frac{{\sqrt{3}}}{3},OH=\frac{1}{3}$,
在RT△EHO中,$tan∠EOH=\frac{EH}{OH}=\sqrt{3}$,∴∠EOH=60°,
即二面角E-AC-B的大小為60°.![]()
點(diǎn)評(píng) 本題考查直線與平面所成角的求法,平面與平面垂直的判定定理的應(yīng)用,考查空間想象能力以及計(jì)算能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:選擇題
已知等差數(shù)列
,
為數(shù)列
的前
項(xiàng)和,若
(
),記數(shù)列
的前
項(xiàng)和為
,則
( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 函數(shù)y=g(x)的最小正周期為π | |
| B. | 函數(shù)y=g(x)的圖象的一條對(duì)稱軸為直線x=$\frac{π}{8}$ | |
| C. | ${∫}_{0}^{\frac{π}{2}}$g(x)dx=$\sqrt{2}$ | |
| D. | 函數(shù)y=g(x)在區(qū)間[$\frac{π}{12}$,$\frac{5π}{8}$]上單調(diào)遞減 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | [8,10] | B. | (6,+∞) | C. | (6,8] | D. | [8,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 120° | B. | 150° | C. | 30° | D. | 60° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (1,2) | B. | (1,$\frac{3\sqrt{2}}{4}$] | C. | $[{\frac{{3\sqrt{2}}}{4},+∞})$ | D. | (2,+∞) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com