欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.設a>0,若關于x,y的不等式組$\left\{\begin{array}{l}{ax-y+2≥0}\\{x+y-2≥0}\\{x-2≤0}\end{array}\right.$,表示的可行域與圓(x-2)2+y2=9存在公共點,則z=x+2y的最大值的取值范圍為( 。
A.[8,10]B.(6,+∞)C.(6,8]D.[8,+∞)

分析 由題意畫出圖形,化目標函數(shù)為直線方程的斜截式,由圖得到使目標函數(shù)取得最大值的最優(yōu)解的點的位置得答案.

解答 解:如圖,作出不等式組大致表示的可行域.

圓(x-2)2+y2=9是以(2,0)為圓心,以3為半徑的圓,
而直線ax-y+2=0恒過定點(0,2),當直線ax-y+2=0過(2,3)時,a=$\frac{1}{2}$.
數(shù)形結合可得a$≥\frac{1}{2}$.
化目標函數(shù)z=x+2y為y=$-\frac{x}{2}+\frac{z}{2}$,
由圖可知,當目標函數(shù)過點(2,2a+2)時,z取得最大值為4a+6,
∵a$≥\frac{1}{2}$,∴z≥8.
∴z=x+2y的最大值的取值范圍為[8,+∞).
故選:D.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,正確畫出可行域是關鍵,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(文)試卷(解析版) 題型:解答題

已知集合,分別求適合下列條件的的值.

(1) ;

(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的漸近線方程為y=±$\frac{1}{2}$x,則雙曲線C的離心率為(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{6}}{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是平行四邊形,$∠BAD={60°},AB=2,PD=\sqrt{3},AD=BD$,O為AC與BD的交點,E為棱PB上一點.
(1)證明:平面EAC⊥平面PBD;
(2)若PE=2EB,求二面角E-AC-B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知點P(2,$\sqrt{2}$)是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的一點,且橢圓的離心率為$\frac{\sqrt{2}}{2}$,過點A(-α,0)任作兩條直線l1,l2分別交橢圓于E、F兩點,交y軸于M,N兩點,E與M兩個點不重合,且E,F(xiàn)關于原點對稱.
(1)求橢圓的方程;
(2)以MN為直徑的圓是否交x軸于定點Q?若是,求出點Q的坐標;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x-4y+3≥0}\\{x+y≥0}\\{x≥1}\end{array}\right.$,目標函數(shù)z=2x+y,則(  )
A.z的最小值為3,z無最大值B.z的最小值為1,最大值為3
C.z的最小值為3,z無最小值D.z的最小值為1,z無最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知圓F的圓心坐標為(1,0),且被直線x+y-2=0截得的弦長為$\sqrt{2}$.
(1)求圓F的方程;
(2)若動圓M與圓F相外切,又與y軸相切,求動圓圓心M的軌跡方程;
(3)直線l與圓心M軌跡位于y軸右側的部分相交于A、B兩點,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4,證明直線l必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某品牌手機廠商推出新款的旗艦機型,并在某地區(qū)跟蹤調查得到這款手機上市時間(x個周)和市場占有率(y%)的幾組相關數(shù)據(jù)如表:
x12345
y0.030.060.10.140.17
(Ⅰ)根據(jù)表中的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程$\widehat{y}=\widehatx+\widehat{a}$;
(Ⅱ)根據(jù)上述線性回歸方程,分析該款旗艦機型市場占有率的變化趨勢,并預測自上市起經過多少個周,該款旗艦機型市場占有率能超過0.40%(最后結果精確到整數(shù)).
參考公式:$\widehat=\frac{{{\sum_{i=1}^{n}x}_{i}y}_{y}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\hat a=\bar y-\hat b\bar x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=|2x+1|+|x-3|-7.
(1)在圖中畫出y=f(x)的圖象;
(2)求不等式|f(x)|>1的解集.

查看答案和解析>>

同步練習冊答案