已知函數(shù)f(x)=x
+4x+3,g(x)為一次函數(shù),若f(g(x))=x
+10x+24,求g(x)
的表達(dá)式.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
。
⑴求函數(shù)
的定義域
⑵求函數(shù)
的值域。
⑶求函數(shù)
的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
.已知函數(shù)
, 其反函數(shù)為![]()
(1) 若
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b8/b/1zoks4.png" style="vertical-align:middle;" />,求實(shí)數(shù)
的取值范圍;
(2) 當(dāng)
時(shí),求函數(shù)
的最小值
;
(3) 是否存在實(shí)數(shù)
,使得函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b1/9/38c9v.png" style="vertical-align:middle;" />,值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/9/lmvgh.png" style="vertical-align:middle;" />,若存在,求出
、
的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)
已知函數(shù)f (x )=
ax 3 + x2 + 2 ( a ≠ 0 ) .
(Ⅰ) 試討論函數(shù)f (x )的單調(diào)性;
(Ⅱ) 若a>0,求函數(shù)f (x ) 在[1,2]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三次函數(shù)
的導(dǎo)函數(shù)
,
,
、
為實(shí)數(shù)。
(Ⅰ)若曲線![]()
在點(diǎn)(
,
)處切線的斜率為12,求
的值;
(Ⅱ)若
在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,且
,求函數(shù)
的解析式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
對任意實(shí)數(shù)
恒有
且當(dāng)x>0,![]()
(1)判斷
的奇偶性;
(2)求
在區(qū)間[-3,3]上的最大值;
(3)解關(guān)于
的不等式![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)設(shè)函數(shù)
.(1)求
的單調(diào)區(qū)間;(2)當(dāng)
時(shí),求函數(shù)
在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f (x)=x 2+ax ,且對任意的實(shí)數(shù)x都有f (1+x)=f (1-x) 成立.
(1)求實(shí)數(shù) a的值;
(2)利用單調(diào)性的定義證明函數(shù)f(x)在區(qū)間[1,+∞
上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)若
,
,
,
為常
數(shù),且![]()
(Ⅰ)求
對所有實(shí)數(shù)成立的充要條件(用
表示);
(Ⅱ)設(shè)
為兩實(shí)數(shù),
且![]()
![]()
,若![]()
求證:
在區(qū)間
上的單調(diào)增區(qū)間的長度和為
(閉區(qū)間
的長度定義為
).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com