欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情

【題目】橢圓C:(a>b>0)的左、右焦點分別為,離心率為,過焦點且垂直于x軸的直線被橢圓C截得的線段長為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點M(0,-1),直線l經過點N(2,1)且與橢圓C相交于A,B兩點(異于點M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.

【答案】(Ⅰ) (Ⅱ)見證明

【解析】

(Ⅰ)根據已知得到關于a,b,c的方程組,解方程組即得橢圓的標準方程;(Ⅱ)先考慮直線l的斜率不存在的情況,再考慮斜率存在的情況,直線l的方程與橢圓的標準方程聯立得到韋達定理,再求出,化簡即得其為定值.

(Ⅰ)將代入中,由可得

所以弦長為,

故有,解得,

所以橢圓的方程為:

(Ⅱ)若直線l的斜率不存在,即直線的方程為x=2,與橢圓只有一個交點,不符合題意。

設直線l的斜率為k,若k=0,直線l與橢圓只有一個交點,不符合題意,故k≠0.

所以直線l的方程為,即, 直線l的方程與橢圓的標準方程聯立得:

消去y得:,

,則,

,

代入上式,得

,命題得證.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】

已知公比為整數的正項等比數列滿足:

1)求數列的通項公式;

2)令,求數列的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知甲同學每投籃一次,投進的概率均為.

(1)求甲同學投籃4次,恰有3次投進的概率;

(2)甲同學玩一個投籃游戲,其規(guī)則如下:最多投籃6次,連續(xù)2次不中則游戲終止.設甲同學在一次游戲中投籃的次數為,求的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC,A,B,C所對的邊分別為a,b,c.滿足2acosC+bcosC+ccosB=0.

()求角C的大小;

()a=2,ABC的面積為,求C的大小。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.

(1)E的方程;

(2)設過點A的動直線lE相交于PQ兩點.OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,.

(Ⅰ)若,求的極值;

(Ⅱ)若函數的兩個零點為,記,證明:

【答案】(Ⅰ)極大值為,無極小值;證明見解析.

【解析】分析:(Ⅰ)先判斷函數上的單調性,然后可得當時,有極大值,無極小值.不妨設,由題意可得,又由條件得,構造,令,則,利用導數可得,故得,,所以

詳解:(Ⅰ),

且當時,,即上單調遞增,

時,,即上單調遞減,

∴當時,有極大值,且無極小值.

(Ⅱ)函數的兩個零點為,不妨設,

,

,

,

,

,則

上單調遞減,

,

,

,

,

點睛:(1)研究方程根的情況,可以通過導數研究函數的單調性、最大(。┲怠⒑瘮档淖兓厔莸,根據題目要求畫出函數圖象的大體圖象,然后通過數形結合的思想去分析問題,可以使得問題的求解有一個清晰、直觀的整體展現

(2)證明不等式時常采取構造函數的方法,然后通過判斷函數的單調性,借助函數的最值進行證明

型】解答
束】
22

【題目】在平面直角坐標系中,直線的參數方程為為參數,.以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,已知曲線的極坐標方程為:

(Ⅰ)求直線的普通方程與曲線的直角坐標方程;

Ⅱ)設直線與曲線交于不同的兩點,的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】宋元時期杰出的數學家朱世杰在其數學巨著《四元玉鑒》卷中“菱草形段”第一個問題“今有菱草六百八十束,欲令‘落一形’捶(同垛)之,問底子(每層三角形邊菱草束數,等價于層數)幾何?”中探討了“垛積術”中的落一形垛(“落一形”即是指頂上束,下一層束,再下一層束,……,成三角錐的堆垛,故也稱三角垛,如圖,表示第二層開始的每層菱草束數),則本問題中三角垛底層菱草總束數為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】算籌是在珠算發(fā)明以前我國獨創(chuàng)并且有效的計算工具,為我國古代數學的發(fā)展做出了很大貢獻.在算籌計數法中,以“縱式”和“橫式”兩種方式來表示數字,如圖:

表示多位數時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:

如果把5根算籌以適當的方式全部放入 下面的表格中,那么可以表示的三位數的個數為( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列結論:

為真為真的充分不必要條件:②為假為真的充分不必要條件;③為真為假的必要不充分條件;④為真為假的必要不充分條件.

其中,正確的結論是__________.

查看答案和解析>>

同步練習冊答案