【題目】已知圓O:x2+y2=16及圓內(nèi)一點(diǎn)F(﹣3,0),過(guò)F任作一條弦AB. ![]()
(1)求△AOB面積的最大值及取得最大值時(shí)直線AB的方程;
(2)若點(diǎn)M在x軸上,且使得MF為△AMB的一條內(nèi)角平方線,求點(diǎn)M的坐標(biāo).
【答案】
(1)解:設(shè)∠AOB=θ,則
,
當(dāng)
時(shí),S△AOBmax=8,此時(shí)O到AB的距離為
,
,
∴S△AOBmax=8,直線AB的方程為 ![]()
(2)解:當(dāng)直線AB斜率不存在時(shí),MF始終平分∠AMB.
當(dāng)直線AB斜率存在時(shí),設(shè)直線AB:y=k(x+3),(k≠0),設(shè)M(m,0),
由
得:(1+k2)x2+6k2x+(9k2﹣16)=0
設(shè)A(x1,y1),B(x2,y2),則
,
.
∵∠BMF=∠AMF,
∴kBM+kAM=0,
,
∴(x1+3)(x2﹣m)+(x2+3)(x1﹣m)=0,
∴2x1x2+(3﹣m)(x1+x2)﹣6m=0,
∴
,
∴﹣32﹣6m=0,
,
∴ ![]()
【解析】(1)設(shè)∠AOB=θ,則
,即可求△AOB面積的最大值及取得最大值時(shí)直線AB的方程;(2)分類(lèi)討論,由
得:(1+k2)x2+6k2x+(9k2﹣16)=0,利用∠BMF=∠AMF,kBM+kAM=0,即可得出結(jié)論.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《張邱建算經(jīng)》是中國(guó)古代數(shù)學(xué)史上的杰作,該書(shū)中有首古民謠記載了一數(shù)列問(wèn)題:“南山一棵竹, 竹尾風(fēng)割斷, 剩下三十節(jié),一節(jié)一個(gè)圈. 頭節(jié)高五寸①,頭圈一尺三②.逐節(jié)多三分③,逐圈少分三④. 一蟻往上爬,遇圈則繞圈. 爬到竹子頂,行程是多遠(yuǎn)?”(注釋?zhuān)?/span>①第一節(jié)的高度為
尺;②第一圈的周長(zhǎng)為
尺;③每節(jié)比其下面的一節(jié)多
尺;④每圈周長(zhǎng)比其下面的一圈少
尺) 問(wèn):此民謠提出的問(wèn)題的答案是
A.
尺 B.
尺
C.
尺 D.
尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x2﹣2ax)(a>0且a≠1)滿足對(duì)任意的x1 , x2∈[3,4],且x1≠x2時(shí),都有
>0成立,則實(shí)數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動(dòng),則直線D1E與A1D所成角的大小是 , 若D1E⊥EC,則直線A1D與平面D1DE所成的角為 ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,在四棱柱
中,點(diǎn)
分別為
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)若四棱柱
是長(zhǎng)方體,且
,求平面
與平面
所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=(ax﹣1)(x﹣1).
(1)若不等式f(x)<0的解集為{x|1<x<2},求實(shí)數(shù)a的值;
(2)當(dāng)a>0時(shí),解關(guān)于x的不等式f(x)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的結(jié)果為( ) ![]()
A.2
B.1
C.0
D.﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , n∈N* , 已知a1=1,a2=
,a3=
,且當(dāng)n≥2時(shí),4Sn+2+5Sn=8Sn+1+Sn﹣1 .
(1)求a4的值.
(2)證明:{an﹣1﹣
an}為等比數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x,y的方程C:x2+y2﹣2x﹣4y+m=0.
(1)當(dāng)m為何值時(shí),方程C表示圓.
(2)若圓C與直線l:x+2y﹣4=0相交于M,N兩點(diǎn),且MN=
,求m的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com