【題目】已知拋物線
的準(zhǔn)線過(guò)橢圓C:
(a>b>0)的左焦點(diǎn)F,且點(diǎn)F到直線l:
(c為橢圓焦距的一半)的距離為4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F做直線與橢圓C交于A,B兩點(diǎn),P是AB的中點(diǎn),線段AB的中垂線交直線l于點(diǎn)Q.若
,求直線AB的方程.
【答案】(1)
;(2)
或
.
【解析】
(1)由拋物線的準(zhǔn)線方程求出
的值,確定左焦點(diǎn)
坐標(biāo),再由點(diǎn)F到直線l:
的距離為4,求出
即可;
(2)設(shè)直線方程,與橢圓方程聯(lián)立,運(yùn)用根與系數(shù)關(guān)系和弦長(zhǎng)公式,以及兩直線垂直的條件和中點(diǎn)坐標(biāo)公式,即可得到所求直線的方程.
(1)拋物線
的準(zhǔn)線方程為
,
,直線
,點(diǎn)F到直線l的距離為
,
,
所以橢圓
的標(biāo)準(zhǔn)方程為
;
(2)依題意
斜率不為0,又過(guò)點(diǎn)
,設(shè)方程為
,
聯(lián)立
,消去
得,
,
,設(shè)
,
,
,
![]()
,
線段AB的中垂線交直線l于點(diǎn)Q,所以
橫坐標(biāo)為3,
,
,
,平方整理得
,
解得
或
(舍去),
,
所求的直線方程為
或
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
是橢圓C:
上的一點(diǎn),橢圓C的離心率與雙曲線
的離心率互為倒數(shù),斜率為
直線l交橢圓C于B,D兩點(diǎn),且A、B、D三點(diǎn)互不重合.
![]()
(1)求橢圓C的方程;
(2)若
分別為直線AB,AD的斜率,求證:
為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
是兩條異面直線,直線
與
都垂直,則下列說(shuō)法正確的是( )
A. 若
平面
,則![]()
B. 若
平面
,則
,![]()
C. 存在平面
,使得
,
,![]()
D. 存在平面
,使得
,
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
中,已知
,
,
,D是邊AC上一點(diǎn),將
沿BD折起,得到三棱錐
.若該三棱錐的頂點(diǎn)A在底面BCD的射影M在線段BC上,設(shè)
,則x的取值范圍為()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
是定義在R上的奇函數(shù),當(dāng)
時(shí),
,則下列命題正確的是( )
A.當(dāng)
時(shí),![]()
B.函數(shù)
有3個(gè)零點(diǎn)
C.
的解集為![]()
D.
,都有![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市
戶(hù)居民的月平均用電量(單位:度),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖.
![]()
(1)求直方圖中
的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為
,
,
,
的四組用戶(hù)中,用分層抽樣的方法抽取
戶(hù)居民,則月平均用電量在
的用戶(hù)中應(yīng)抽取多少戶(hù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游勝地欲開(kāi)發(fā)一座景觀山,從山的側(cè)面進(jìn)行勘測(cè),迎面山坡線
由同一平面的兩段拋物線組成,其中
所在的拋物線以
為頂點(diǎn)、開(kāi)口向下,
所在的拋物線以
為頂點(diǎn)、開(kāi)口向上,以過(guò)山腳(點(diǎn)
)的水平線為
軸,過(guò)山頂(點(diǎn)
)的鉛垂線為
軸建立平面直角坐標(biāo)系如圖(單位:百米).已知
所在拋物線的解析式
,
所在拋物線的解析式為![]()
![]()
(1)求
值,并寫(xiě)出山坡線
的函數(shù)解析式;
(2)在山坡上的700米高度(點(diǎn)
)處恰好有一小塊平地,可以用來(lái)建造索道站,索道的起點(diǎn)選擇在山腳水平線上的點(diǎn)
處,
(米),假設(shè)索道
可近似地看成一段以
為頂點(diǎn)、開(kāi)口向上的拋物線
當(dāng)索道在
上方時(shí),索道的懸空高度有最大值,試求索道的最大懸空高度;
(3)為了便于旅游觀景,擬從山頂開(kāi)始、沿迎面山坡往山下鋪設(shè)觀景臺(tái)階,臺(tái)階每級(jí)的高度為20厘米,長(zhǎng)度因坡度的大小而定,但不得少于20厘米,每級(jí)臺(tái)階的兩端點(diǎn)在坡面上(見(jiàn)圖).試求出前三級(jí)臺(tái)階的長(zhǎng)度(精確到厘米),并判斷這種臺(tái)階能否一直鋪到山腳,簡(jiǎn)述理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求直線
和曲線
的普通方程;
(2)已知點(diǎn)
,且直線
和曲線
交于
兩點(diǎn),求
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人各自獨(dú)立地進(jìn)行射擊比賽,甲、乙兩人向射擊一次,擊中目標(biāo)的概率分別是
和
,假設(shè)每次射擊是否擊中目標(biāo)相互之間沒(méi)有影響.
(1)求甲射擊3次,至少有1次未擊中目標(biāo)的概率;
(2)求兩人各射擊3次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)1次的概率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com