【題目】已知函數(shù)
是定義在R上的奇函數(shù),當(dāng)
時(shí),
,則下列命題正確的是( )
A.當(dāng)
時(shí),![]()
B.函數(shù)
有3個(gè)零點(diǎn)
C.
的解集為![]()
D.
,都有![]()
【答案】BCD
【解析】
設(shè)
,則
,則由題意得
,根據(jù)奇函數(shù)
即可求出解析式,即可判斷A選項(xiàng),再根據(jù)解析式分類討論即可判斷B、C兩個(gè)選項(xiàng),對(duì)函數(shù)求導(dǎo),得單調(diào)性,從而求出值域,進(jìn)而判斷D選項(xiàng).
解:(1)當(dāng)
時(shí),
,則由題意得
,
∵ 函數(shù)
是奇函數(shù),
∴
,且
時(shí),![]()
![]()
,A錯(cuò);
∴
,
(2)當(dāng)
時(shí),由
得
,
當(dāng)
時(shí),由
得
,
∴ 函數(shù)
有3個(gè)零點(diǎn)
,B對(duì);
(3)當(dāng)
時(shí),由
得
,
當(dāng)
時(shí),由
得
,
∴
的解集為
,C對(duì);
(4)當(dāng)
時(shí),由
得
,
由
得
,由
得
,
∴ 函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增,
∴函數(shù)在
上有最小值
,且![]()
,
又∵ 當(dāng)
時(shí),
時(shí)
,函數(shù)在
上只有一個(gè)零點(diǎn),
∴當(dāng)
時(shí),函數(shù)
的值域?yàn)?/span>
,
由奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱得函數(shù)
在
的值域?yàn)?/span>![]()
,
∴ 對(duì)
,都有
,D對(duì);
故選:BCD.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
為奇質(zhì)數(shù),
、
是小于
的正整數(shù).證明:
的充分必要條件是,對(duì)任何小于
的正整數(shù)
,均有
等于正奇數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)2007年至2011年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 |
人均純收入y | 3.1 | 3.6 | 3.9 | 4.4 | 5 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2011年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程,曲線
的參數(shù)方程;
(2)若
分別為曲線
,
上的動(dòng)點(diǎn),求
的最小值,并求
取得最小值時(shí),
點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的中心在坐標(biāo)原點(diǎn),左右焦點(diǎn)分別為
和
,且橢圓
經(jīng)過(guò)點(diǎn)
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓的右頂點(diǎn)
作兩條相互垂直的直線
,
,分別與橢圓交于點(diǎn)
(均異于點(diǎn)
),求證:直線
過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為我國(guó)數(shù)學(xué)家趙爽(約3世紀(jì)初)在為《周髀算經(jīng)》作注時(shí)驗(yàn)證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個(gè)小區(qū)域涂色,規(guī)定每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域顏色不相同,則不同的涂色方案共有( )
![]()
A.360種B.720種C.480種D.420種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”,三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明.如圖所示的“勾股圓方圖”中,四個(gè)相同的直角三角形與中間的小正方形拼成一個(gè)大正方形,若直角三角形的直角邊的邊長(zhǎng)分別是3和4,在繪圖內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自小正方形的概率為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)藥公司研發(fā)一種新的保健產(chǎn)品,從一批產(chǎn)品中抽取200盒作為樣本,測(cè)量產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,該指標(biāo)值越高越好.由測(cè)量結(jié)果得到如下頻率分布直方圖:
![]()
(Ⅰ)求
,并試估計(jì)這200盒產(chǎn)品的該項(xiàng)指標(biāo)的平均值;
(Ⅱ)① 用樣本估計(jì)總體,由頻率分布直方圖認(rèn)為產(chǎn)品的質(zhì)量指標(biāo)值
服從正態(tài)分布
,計(jì)算該批產(chǎn)品指標(biāo)值落在
上的概率;參考數(shù)據(jù):附:若
,則
,
.
②國(guó)家有關(guān)部門(mén)規(guī)定每盒產(chǎn)品該項(xiàng)指標(biāo)不低150均為合格,且按指標(biāo)值的從低到高依次分為:合格、優(yōu)良、優(yōu)秀三個(gè)等級(jí),其中
為優(yōu)良,不高于180為合格,不低于220為優(yōu)秀,在①的條件下,設(shè)公司生產(chǎn)該產(chǎn)品1萬(wàn)盒的成本為15萬(wàn)元,市場(chǎng)上每盒該產(chǎn)品的等級(jí)售價(jià)(單位:元)如圖表,求該公司每萬(wàn)盒的平均利潤(rùn).
等級(jí) | 合格 | 優(yōu)良 | 優(yōu)秀 |
價(jià)格 | 10 | 20 | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有9名學(xué)生在同一間教室參加一次數(shù)學(xué)競(jìng)賽,座位排列成3行3列,用
的方格棋盤(pán)表示,其中,每個(gè)方格代表一個(gè)座位為了避免舞弊,采用A、B、C三種類型的試卷,要使任何兩個(gè)相鄰的座位(有公共邊的兩個(gè)方格)發(fā)放的試卷類型不同.則符合條件的發(fā)放試卷的方法共有________種.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com