分析 (1)利用等差數(shù)列通項公式先求出${a}_{n}+n={2}^{n}$,由此能求出數(shù)列{an}的通項公式.
(2)由${a}_{n}={2}^{n}-n$,利用分組求和法能求出a1+a2+a3+…+an.
解答 解:(1)∵數(shù)列{an+n}是首項為2,公比為2的等比數(shù)列,
∴${a}_{n}+n={2}^{n}$,
∴${a}_{n}={2}^{n}-n$.
(2)∵${a}_{n}={2}^{n}-n$,
∴a1+a2+a3+…+an
=(2+22+23+…+2n)-(1+2+3+…+n)
=$\frac{2(1-{2}^{n})}{1-2}$-$\frac{n(n+1)}{2}$
=2n+1-2-$\frac{n(n+1)}{2}$.
點評 本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 | B. | 8 | C. | $\frac{13}{2}$ | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2 | B. | 0 | C. | 1 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | f(1)<c | B. | f(1)>c | C. | f(2)<c | D. | f(2)>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽八中高三上學(xué)期月考二數(shù)學(xué)(理)試卷(解析版) 題型:選擇題
已知函數(shù)
,
,若至少存在一個
,使
成立,則實數(shù)a的范圍為( )
A.[
,+∞) B.(0,+∞)
C.[0,+∞) D.(
,+∞)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com