分析 (1)根據(jù)兩角和差的正弦公式即可求出,
(2)由余弦定理,和基本不等式得到ab≤12,再根據(jù)面積公式即可求出.
解答 解:(1)sin(C+$\frac{π}{6}$)-cosC=$\frac{\sqrt{3}}{2}$sinC+$\frac{1}{2}$cosC-cosC=$\frac{\sqrt{3}}{2}$sinC-$\frac{1}{2}$cosC=sin(C-$\frac{π}{6}$)=$\frac{1}{2}$,
∵0<C<π,
∴-$\frac{π}{6}$<C-$\frac{π}{6}$<$\frac{5π}{6}$,
∴C-$\frac{π}{6}$=$\frac{π}{6}$,
∴C=$\frac{π}{3}$,
(2)由余弦定理的c2=a2+b2-2abcosC,c=2$\sqrt{3}$,
∴a2+b2-ab=12,
即12=a2+b2-ab≥2ab-ab,
即ab≤12,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào),
∴(a+b)2=a2+b2+2ab≥4ab≥48,
∴a+b=4$\sqrt{3}$,
∴△ABC的周長(zhǎng)最大時(shí)ab≤12,
∴S△ABC=$\frac{1}{2}$absinC≤$\frac{1}{2}$×12×$\frac{\sqrt{3}}{2}$=3$\sqrt{3}$,
故三角形的面積最大為3$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)和求值,以及余弦定理,三角形的面積公式,基本不等式,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
| x(千克) | 2 | 4 | 5 | 6 | 8 |
| y(百斤) | 3 | 4 | 4 | 4 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-∞,0] | B. | (-∞,1] | C. | [-2,0] | D. | [-2,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com