已知
,
, 且![]()
求函數(shù)
的最小正周期
(2) 當(dāng)
時(shí),
的最小值是-4 , 求此時(shí)m的值和函數(shù)
的最大值, 并求出相應(yīng)的
的值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
| 3 |
| 1 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 2 |
| x |
| 2 |
| 2 |
| ||
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省泰州市姜堰市高三(下)期初數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江西省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知![]()
(1)求函數(shù)
在
上的最小值
(2)對一切的
恒成立,求實(shí)數(shù)a的取值范圍
(3)證明對一切
,都有
成立
【解析】第一問中利用
當(dāng)
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)![]()
,即
時(shí),
,![]()
![]()
第二問中,
,則
設(shè)
,
則
,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因?yàn)閷σ磺?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131571401959588_ST.files/image005.png">,
恒成立,
第三問中問題等價(jià)于證明
,
,
由(1)可知
,
的最小值為
,當(dāng)且僅當(dāng)x=
時(shí)取得
設(shè)
,
,則
,易得![]()
。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對一切
,都有
成立
解:(1)
當(dāng)
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)![]()
,即
時(shí),
,![]()
…………4分
(2)
,則
設(shè)
,
則
,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因?yàn)閷σ磺?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131571401959588_ST.files/image005.png">,
恒成立,
…………9分
(3)問題等價(jià)于證明
,
,
由(1)可知
,
的最小值為
,當(dāng)且僅當(dāng)x=
時(shí)取得
設(shè)
,
,則
,易得![]()
。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對一切
,都有
成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省高三第一次月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
已知數(shù)列
,且
是函數(shù)
,(
)的一個(gè)極值點(diǎn).?dāng)?shù)列
中
(
且
).
(1)求數(shù)列
的通項(xiàng)公式;
(2)記
,當(dāng)
時(shí),數(shù)列
的前
項(xiàng)和為
,求使
的
的最小值;
(3)若
,證明:
(
)。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com