已知![]()
(1)求函數(shù)
在
上的最小值
(2)對一切的
恒成立,求實數(shù)a的取值范圍
(3)證明對一切
,都有
成立
【解析】第一問中利用
當(dāng)
時,
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)![]()
,即
時,
,![]()
![]()
第二問中,
,則
設(shè)
,
則
,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因為對一切
,
恒成立,
第三問中問題等價于證明
,
,
由(1)可知
,
的最小值為
,當(dāng)且僅當(dāng)x=
時取得
設(shè)
,
,則
,易得![]()
。當(dāng)且僅當(dāng)x=1時取得.從而對一切
,都有
成立
解:(1)
當(dāng)
時,
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)![]()
,即
時,
,![]()
…………4分
(2)
,則
設(shè)
,
則
,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因為對一切
,
恒成立,
…………9分
(3)問題等價于證明
,
,
由(1)可知
,
的最小值為
,當(dāng)且僅當(dāng)x=
時取得
設(shè)
,
,則
,易得![]()
。當(dāng)且僅當(dāng)x=1時取得.從而對一切
,都有
成立
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西師大附中高三年級上學(xué)期期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題
已知![]()
(1)求函數(shù)
在
上的最小值;
(2)對一切
恒成立,求實數(shù)
的取值范圍;
(3)證明:對一切
,都有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山東省高二下學(xué)期3月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知![]()
(1)求函數(shù)
在
上的最小值
(2)對一切的
恒成立,求實數(shù)a的取值范圍
(3)證明對一切
,都有
成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市高三上學(xué)期半期考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知
.
(1)求函數(shù)
在
上的最小值;
(2)對一切
恒成立,求實數(shù)
的取值范圍;
(3)證明:對一切
,都有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省唐山市高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(12分)已知![]()
(1)求函數(shù)
在
上的最小值;
(2)對一切
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三10月月考理科數(shù)學(xué)卷 題型:解答題
已知![]()
(1)求函數(shù)
在
>0
上的最小值;
(2)對一切
恒成立,求實數(shù)
的取值范圍;
(3)證明:對一切
,都有
>
成立.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com