已知函數(shù)
,
為實數(shù))有極值,且在
處的切線與直線
平行.
(Ⅰ)求實數(shù)a的取值范圍;
(Ⅱ)是否存在實數(shù)a,使得函數(shù)
的極小值為1,若存在,求出實數(shù)a的值;若不存在,請說明理由;
(Ⅲ)設(shè)函數(shù)
試判斷函數(shù)
在
上的符號,并證明:
(
).
(Ⅰ)
;(Ⅱ)
(Ⅲ)見解析.
解析試題分析:(Ⅰ)由已知在
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
處的切線與直線
平行,得
且
有兩個不等實根,從而得出
的范圍;(Ⅱ)先由導(dǎo)函數(shù)得出函數(shù)的單調(diào)性,確定函數(shù)的極小值點,然后由函數(shù)
的極小值為1得出存在的
值;(Ⅲ)先確定
的單調(diào)性,
在
上是增函數(shù),故
,構(gòu)造![]()
,分別取
的值為1、2、3、 、
累加即可得證.
試題解析:(Ⅰ)![]()
由題意![]()
① (1分)![]()
②
由①、②可得,![]()
故實數(shù)a的取值范圍是
(3分)
(Ⅱ)存在
(5分)
由(1)可知
,
,且![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
+ 0 - 0 + ![]()
單調(diào)增 極大值 單調(diào)減 極小值
![]()
![]()
科學(xué)實驗活動冊系列答案
課標(biāo)新檢測系列答案
課程標(biāo)準(zhǔn)同步練習(xí)系列答案
課課練習(xí)系列答案
云南師大附小一線名師核心試卷系列答案
奪冠計劃課時測控系列答案
課時精練系列答案
課時全練講練測全程達(dá)標(biāo)系列答案
課時天天練系列答案
課時學(xué)案系列答案
上為增函數(shù),且
,
,
.
(1)求
的值;
(2)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間和極值;
(3)若在
上至少存在一個
,使得
成立,求
的取值范圍.
若函數(shù)
在x = 0處取得極值.
(1) 求實數(shù)
的值;
(2) 若關(guān)于x的方程
在區(qū)間[0,2]上恰有兩個不同的實數(shù)根,求實數(shù)
的取值范圍;
(3) 證明:對任意的自然數(shù)n,有
恒成立.
,其中
是自然對數(shù)的底數(shù).
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間和極值;
(Ⅱ)若函數(shù)
對任意
滿足
,求證:當(dāng)
時,
;
(Ⅲ)若
,且
,求證:![]()
.
(1)若函數(shù)
為奇函數(shù),求a的值;
(2)若
,直線
都不是曲線
的切線,求k的取值范圍;
(3)若
,求
在區(qū)間
上的最大值.![]()
(1)若函數(shù)
在點
處的切線方程為
,求
的值;
(2)若
,函數(shù)
在區(qū)間
內(nèi)有唯一零點,求
的取值范圍;
(3)若對任意的
,均有
,求
的取值范圍.
和
,且
.
(1)求函數(shù)
,
的表達(dá)式;
(2)當(dāng)
時,不等式
在
上恒成立,求實數(shù)
的取值范圍.
,
.
(Ⅰ)當(dāng)
,
時,求
的單調(diào)區(qū)間;
(2)當(dāng)
,且
時,求
在區(qū)間
上的最大值.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號