如圖,PA垂直于矩形ABCD所在的平面,
,E、F分別是AB、PD的中點(diǎn).![]()
(Ⅰ)求證:平面PCE
平面PCD;
(Ⅱ)求三棱錐P-EFC的體積.
(Ⅰ)取
中點(diǎn)G,連接![]()
![]()
![]()
平面
平面
平面
平面PCE
平面PCD(Ⅱ)![]()
解析試題分析:(Ⅰ)取
中點(diǎn)G,連接![]()
平面![]()
![]()
![]()
![]()
![]()
(Ⅱ)由(2)知
,![]()
考點(diǎn):面面垂直的判定及三棱錐體積求解
點(diǎn)評(píng):在第二小題中充分利用第一小題的結(jié)論,將三棱錐轉(zhuǎn)換一個(gè)新的底面,此時(shí)高就能確定下來(lái),簡(jiǎn)化了求解過(guò)程
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一個(gè)多面體的直觀圖和三視圖如圖所示,其中
、
分別是
、
的中點(diǎn),
是
上的一動(dòng)點(diǎn),主視圖與俯視圖都為正方形。![]()
![]()
⑴求證:
;
⑵當(dāng)
時(shí),在棱
上確定一點(diǎn)
,使得
∥平面
,并給出證明。
⑶求二面角
的平面角余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M為AB的中點(diǎn)。![]()
(Ⅰ)求證:BC1∥平面MA1C;
(Ⅱ)求證:AC1⊥平面A1BC。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在五面體ABCDEF中,
,
,
,![]()
![]()
(Ⅰ)求異面直線(xiàn)BF與DE所成角的余弦值;
(Ⅱ)在線(xiàn)段CE上是否存在點(diǎn)M,使得直線(xiàn)AM與平面CDE所成角的正弦值為
?若存在,試確定點(diǎn)M的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分10分)
如圖所示是一個(gè)半圓柱
與三棱柱
的組合體,其中,圓柱
的軸截面
是邊長(zhǎng)為4的正方形,![]()
為等腰直角三角形,
.![]()
試在給出的坐標(biāo)紙上畫(huà)出此組合體的三視圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在四棱錐
中,底面
是直角梯形,
∥
,∠
,
,平面
⊥平面
.![]()
(1)求證:
⊥平面
;
(2)求平面
和平面
所成二面角(小于
)的大;
(3)在棱
上是否存在點(diǎn)
使得
∥平面
?若存在,求
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)如圖所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1、A1A的中點(diǎn).![]()
(1)求
的長(zhǎng); (2)求cos<
>的值; (3)求證:A1B⊥C1M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)如圖,四棱錐P—ABCD的底面是矩形,PA⊥面ABCD,PA=2
,AB=8,BC=6,點(diǎn)E是PC的中點(diǎn),F(xiàn)在AD上且AF:FD=1:2.建立適當(dāng)坐標(biāo)系.![]()
(1)求EF的長(zhǎng);
(2)證明:EF⊥PC.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com