【題目】如圖(1),在矩形
中,已知
分別為
和
的中點(diǎn),對角線
與
交于
點(diǎn),沿
把矩形
折起,使兩個半平面所成二面角為60°,如圖(2).
![]()
(1)求證:
;
(2)求
與平面
所成角的正弦值.
【答案】(1)證明見解析;(2)
.
【解析】
試題(1)依題意可知
,利用勾股定理分別求出
,再利用勾股定理證明三角形
是直角三角形,所以
;(2)過
作
,連接
,易證得
為
與平面
所成的角,由此求得
與平面
所成角的正弦值為
.
試題解析:
(1)證明 :翻折前,由于
是矩形
的邊
和
的中點(diǎn),所以
,折疊后垂直關(guān)系不變,所以
是兩個半平面所成二面角的平面角,所以
.
連接
,由
,可知
是正三角形,所以
,
在
中,
,所以
,由題可知
,由勾股定理可知三角形
是直角三角形,所以
.
(2)設(shè)
分別是
的中點(diǎn),連接
,又
,所以
,則
,
又
,所以
平面
.
又
,所以
,又
,所以
平面
.又
平面
,所以平面
平面
.
過
作
,由面面垂直的性質(zhì)定理,可得
平面
,連接
,則
是
在平面
的投影,所以
為
與平面
所成的角.
又
是
斜邊上的高,所以
,又
,所以
.
故
與平面
所成角的正弦值為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于等差數(shù)列和等比數(shù)列的敘述正確的是( )
A.若非常數(shù)列
為等差數(shù)列,則
也可能是等差數(shù)列
B.若非常數(shù)列
為等比數(shù)列,則
不可能是等差數(shù)列
C.若數(shù)列
的前n項(xiàng)和![]()
,則數(shù)列
可能是等差數(shù)列
D.若等差數(shù)列
的前n項(xiàng)和
有最大值,則公差d可能大于零
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市為了解端午節(jié)期間粽子的銷售量,對其所在銷售范圍內(nèi)的1000名消費(fèi)者在端午節(jié)期間的粽子購買量(單位:g)進(jìn)行了問卷調(diào)查,得到如圖所示的頻率分布直方圖.
![]()
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)求這1000名消費(fèi)者的棕子購買量在600g~1400g的人數(shù);
(Ⅲ)求這1000名消費(fèi)者的人均粽子購買量(頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,右焦點(diǎn)為
。斜率為1的直線
與橢圓
交于
兩點(diǎn),以
為底邊作等腰三角形,頂點(diǎn)為
。
(1)求橢圓
的方程;
(2)求
的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某射擊運(yùn)動員,每次擊中目標(biāo)的概率都是
.現(xiàn)采用隨機(jī)模擬的方法估計該運(yùn)動員射擊
次至少擊中
次的概率:先由計算器算出
到
之間取整數(shù)值的隨機(jī)數(shù),指定
,
表示沒有擊中目標(biāo),
,
,
,
,
,
,
,
表示擊中目標(biāo);因?yàn)樯鋼?/span>
次,故以每
個隨機(jī)數(shù)為一組,代表射擊
次的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下
組隨機(jī)數(shù):
![]()
![]()
據(jù)此估計,該射擊運(yùn)動員射擊
次至少擊中
次的概率為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市隨機(jī)選取
位顧客,記錄了他們購買甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計表,其中“√”表示購買,“×”表示未購買.
| 甲 | 乙 | 丙 | 丁 |
| √ | × | √ | √ |
| × | √ | × | √ |
| √ | √ | √ | × |
| √ | × | √ | × |
85 | √ | × | × | × |
| × | √ | × | × |
(Ⅰ)估計顧客同時購買乙和丙的概率;
(Ⅱ)估計顧客在甲、乙、丙、丁中同時購買
中商品的概率;
(Ⅲ)如果顧客購買了甲,則該顧客同時購買乙、丙、丁中那種商品的可能性最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若
的圖象在點(diǎn)
處的切線方程為
,求
在區(qū)間[-2,4]上的最大值;
(2)當(dāng)
時,若
在區(qū)間(-1,1)上不單調(diào),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是我國2012年至2018年生活垃圾無害化處理量(單位:億噸)的折線圖.注:年份代碼1~7分別對應(yīng)年份2012~2018.
(1)由折線圖看出,可用線性回歸模型擬合
與
的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立
關(guān)于
的回歸方程(系數(shù)精確到0.01),預(yù)測2020年我國生活垃圾無害化處理量.
參考數(shù)據(jù):
,
,
,
.
![]()
參考公式:相關(guān)系數(shù)
,回歸方程
中斜率和截距的最小二乘估計公式分別為
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com