欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且a=2,b=3,tanB=3,則sinA的值為$\frac{\sqrt{10}}{5}$.

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求sinB,進(jìn)而利用正弦定理即可計算得解.

解答 解:∵tanB=$\frac{sinB}{cosB}$=3,sin2B+cos2B=1,
∴解得:$sinB=\frac{{3\sqrt{10}}}{10}$,
又∵a=2,b=3,
∴由正弦定理可得$\frac{2}{sinA}=\frac{3}{{\frac{{3\sqrt{10}}}{10}}}$,
∴解得:$sinA=\frac{{\sqrt{10}}}{5}$.
故答案為:$\frac{\sqrt{10}}{5}$.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,正弦定理在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}滿足an+1=an2-nan+1,n=1,2,3,….
(1)當(dāng)a1=2時,求a2,a3,a4,并由此猜想出{an}的一個通項公式;
(2)當(dāng)a1≥3時,用數(shù)學(xué)歸納法證明對所有n≥1,有an≥n+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知Sn是等差數(shù)列{an}的前n項和,且s6>s7>s5,給出下列五個命題:①d>0;②S11>0;③S12<0;④數(shù)列{Sn}中的最大項為S11;⑤|a5|>|a7|.其中正確命題的個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若定義在R上的函數(shù)y=f(x)滿足:對于任意實數(shù)x,y,總有f(x+y)+f(x-y)=2f(x)f(y)恒成立,我們稱f(x)為“類余弦型”函數(shù).
(1)已知f(x)為“類余弦型”函數(shù),且$f(1)=\frac{5}{4}$,求f(0)和f(2)的值;
(2)在(1)的條件下,定義數(shù)列an=2f(n+1)-f(n)(n=1,2,3…),求${log_2}\frac{a_1}{3}+{log_2}\frac{a_2}{3}+…+{log_2}\frac{{{a_{2017}}}}{3}$的值;
(3)若f(x)為“類余弦型”函數(shù),且對于任意非零實數(shù)t,總有f(t)>1,證明:函數(shù)f(x)為偶函數(shù);設(shè)有理數(shù)x1,x2滿足|x1|<|x2|,判斷f(x1)和f(x2)的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.有以下結(jié)論:
①已知p3+q3=2,求證p+q≤2,用反證法證明時,可假設(shè)p+q≥2;
②已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1,用反證法證明時可假設(shè)方程有一根x1的絕對值大于或等于1,即假設(shè)|x1|≥1.
下列說法中正確的是( 。
A.①與②的假設(shè)都錯誤B.①與②的假設(shè)都正確
C.①的假設(shè)正確;②的假設(shè)錯誤D.①的假設(shè)錯誤;②的假設(shè)正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,正方體ABCD-A1B1C1D1棱長為1.
(1)求證:BD1⊥平面ACB1;
(2)求直線BA1與平面A1C1D1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知Sn為等差數(shù)列{an}的前n項和,a1=8,S10=-10.
(Ⅰ)求an,Sn;
(Ⅱ)設(shè)Tn=|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.分別計算31+51,32+52,33+53,34+54,35+55,…,并根據(jù)計算的結(jié)果,猜想32017+52017的末位數(shù)字為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=x2(2x-2-x),則不等式f(2x+1)+f(1)<0的解集是( 。
A.$({-∞,-\frac{1}{2}})$B.(-∞,-1)C.$({-\frac{1}{2},+∞})$D.(-1,+∞)

查看答案和解析>>

同步練習(xí)冊答案