【題目】已知
,若存在三個(gè)不同實(shí)數(shù)
使得
,則
的取值范圍是( )
A.
B.
C.
D.(0,1)
【答案】C
【解析】
先畫出分段函數(shù)f(x)的圖象,然后根據(jù)圖象分析a、b、c的取值范圍,再根據(jù)對數(shù)函數(shù)以及絕對值函數(shù)的性質(zhì)得出bc=1,即可得到abc的取值范圍.
由題意,畫出函數(shù)f(x)的圖象大致如圖所示:
∵存在三個(gè)不同實(shí)數(shù)a,b,c,使得f(a)=f(b)=f(c),可假設(shè)a<b<c,
∴根據(jù)函數(shù)圖象,可知:﹣2<a≤0,0<b<1,c>1.又∵f(b)=f(c),
∴|log2019b|=|log2019c|,即:﹣log2019b=log2019c.∴log2019b+log2019c=0.
∴log2019bc=0,即bc=1.∴abc=a.∵﹣2<a≤0,∴﹣2<abc≤0.
故選:C.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中正確的是______.
(1)將
圖像向左平移
個(gè)單位,再將所有點(diǎn)的橫坐標(biāo)擴(kuò)大為原來的
倍,得到
的圖像;
(2)將
圖像上所有點(diǎn)的橫坐標(biāo)擴(kuò)大為原來的
倍,再將圖像向左平移
個(gè)單位,得到
的圖像;
(3)將
圖像上所有點(diǎn)的橫坐標(biāo)擴(kuò)大為原來的
倍,再將圖像向左平移
個(gè)單位,得到
的圖像;
(4)將
圖像上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>
倍,再將圖像向左平移
個(gè)單位,得到
的圖像;
(5)將
圖像向左平移
個(gè)單位,再將所有點(diǎn)的橫坐標(biāo)擴(kuò)大為原來的
倍,得到
的圖像;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生寒假期間學(xué)習(xí)情況,學(xué)校對某班男、女學(xué)生學(xué)習(xí)時(shí)間進(jìn)行調(diào)查,學(xué)習(xí)時(shí)間按整小時(shí)統(tǒng)計(jì),調(diào)查結(jié)果繪成折線圖如下:
![]()
(1)已知該校有
名學(xué)生,試估計(jì)全校學(xué)生中,每天學(xué)習(xí)不足
小時(shí)的人數(shù).
(2)若從學(xué)習(xí)時(shí)間不少于
小時(shí)的學(xué)生中選取
人,設(shè)選到的男生人數(shù)為
,求隨機(jī)變量
的分布列.
(3)試比較男生學(xué)習(xí)時(shí)間的方差
與女生學(xué)習(xí)時(shí)間方差
的大小.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,側(cè)面
底面
,底面
是平行四邊形,
,
,
,
為
的中點(diǎn),點(diǎn)
在線段
上.
![]()
(Ⅰ)求證:
;
(Ⅱ)試確定點(diǎn)
的位置,使得直線
與平面
所成的角和直線
與平面
所成的角相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
,給定下列命題:
①若方程
有兩個(gè)不同的實(shí)數(shù)根,則
;
②若方程
恰好只有一個(gè)實(shí)數(shù)根,則
;
③若
,總有
恒成立,則
;
④若函數(shù)
有兩個(gè)極值點(diǎn),則實(shí)數(shù)
.
則正確命題的個(gè)數(shù)為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從1到7的7個(gè)數(shù)字中取兩個(gè)偶數(shù)和三個(gè)奇數(shù)組成沒有重復(fù)數(shù)字的五位數(shù).
試問:(1)能組成多少個(gè)不同的五位偶數(shù)?
(2)五位數(shù)中,兩個(gè)偶數(shù)排在一起的有幾個(gè)?
(3)兩個(gè)偶數(shù)不相鄰且三個(gè)奇數(shù)也不相鄰的五位數(shù)有幾個(gè)?(所有結(jié)果均用數(shù)值表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果直線與橢圓只有一個(gè)交點(diǎn),稱該直線為橢圓的“切線”.已知橢圓
,點(diǎn)
是橢圓
上的任意一點(diǎn),直線
過點(diǎn)
且是橢圓
的“切線”.
![]()
(1)證明:過橢圓
上的點(diǎn)
的“切線”方程是
;
(2)設(shè)
,
是橢圓
長軸上的兩個(gè)端點(diǎn),點(diǎn)
不在坐標(biāo)軸上,直線
,
分別交
軸于點(diǎn)
,
,過
的橢圓
的“切線”
交
軸于點(diǎn)
,證明:點(diǎn)
是線段
的中點(diǎn);
(3)點(diǎn)
不在
軸上,記橢圓
的兩個(gè)焦點(diǎn)分別為
和
,判斷過
的橢圓
的“切線”
與直線
,
所成夾角是否相等?并說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com