已知橢圓
的離心率為
,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
,直線
交橢圓于不同的兩點(diǎn)
。
(1)求橢圓的方程;
(2)若坐標(biāo)原點(diǎn)
到直線
的距離為
,求
面積的最大值。
(1)
(2)![]()
解析試題分析:(1)由
,橢圓的方程為:![]()
(2)由已知
,聯(lián)立
和
,消去
,整理可得:
,![]()
設(shè)
,則![]()
![]()
,當(dāng)且僅當(dāng)
時(shí)取等號(hào)
顯然
時(shí),
。![]()
考點(diǎn):本題考查了橢圓的方程及直線與橢圓的位置關(guān)系
點(diǎn)評(píng):橢圓的概念和性質(zhì),仍將是今后命題的熱點(diǎn),定值、最值、范圍問(wèn)題將有所加強(qiáng);利用直線、弦長(zhǎng)、圓錐曲線三者的關(guān)系組成的各類試題是解析幾何中長(zhǎng)盛不衰的主題,其中求解與相交弦有關(guān)的綜合題仍是今后命題的重點(diǎn);與其它知識(shí)的交匯(如向量、不等式)命題將是今后高考命題的一個(gè)新的重點(diǎn)、熱點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)
是離心率為
的橢圓
:
上的一點(diǎn),斜率為
的直線
交橢圓
于
、
兩點(diǎn),且
、
、
三點(diǎn)不重合.
(1)求橢圓
的方程;
(2)
的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓
的中心在原點(diǎn),其上、下頂點(diǎn)分別為
,點(diǎn)
在直線
上,點(diǎn)
到橢圓的左焦點(diǎn)的距離為
.![]()
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)
是橢圓上異于
的任意一點(diǎn),點(diǎn)
在
軸上的射影為
,
為
的中點(diǎn),直線
交直線
于點(diǎn)
,
為
的中點(diǎn),試探究:
在橢圓上運(yùn)動(dòng)時(shí),直線
與圓
:
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為
,點(diǎn)
是點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn),過(guò)點(diǎn)
的直線交拋物線于
兩點(diǎn)。
(1)試問(wèn)在
軸上是否存在不同于點(diǎn)
的一點(diǎn)
,使得
與
軸所在的直線所成的銳角相等,若存在,求出定點(diǎn)
的坐標(biāo),若不存在說(shuō)明理由。
(2)若
的面積為
,求向量
的夾角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線
的漸近線方程為
,左焦點(diǎn)為F,過(guò)
的直線為
,原點(diǎn)到直線
的距離是![]()
(1)求雙曲線的方程;
(2)已知直線
交雙曲線于不同的兩點(diǎn)C,D,問(wèn)是否存在實(shí)數(shù)
,使得以CD為直徑的圓經(jīng)過(guò)雙曲線的左焦點(diǎn)F。若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線
(
)上一點(diǎn)
到其準(zhǔn)線的距離為
.![]()
(Ⅰ)求
與
的值;
(Ⅱ)設(shè)拋物線
上動(dòng)點(diǎn)
的橫坐標(biāo)為
(
),過(guò)點(diǎn)
的直線交
于另一點(diǎn)
,交
軸于
點(diǎn)(直線
的斜率記作
).過(guò)點(diǎn)
作
的垂線交
于另一點(diǎn)
.若
恰好是
的切線,問(wèn)
是否為定值?若是,求出該定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線
的焦點(diǎn)為
,過(guò)焦點(diǎn)
且不平行于
軸的動(dòng)直線
交拋物線于
,
兩點(diǎn),拋物線在
、
兩點(diǎn)處的切線交于點(diǎn)
.![]()
(Ⅰ)求證:
,
,
三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)設(shè)直線
交該拋物線于
,
兩點(diǎn),求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
經(jīng)過(guò)點(diǎn)
,且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)動(dòng)直線
交橢圓
于
、
兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)
,使得以
為直徑的圓恒過(guò)點(diǎn)
.若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知平面內(nèi)一動(dòng)點(diǎn)
到點(diǎn)
的距離與點(diǎn)
到
軸的距離的差等于1.(I)求動(dòng)點(diǎn)
的軌跡
的方程;(II)過(guò)點(diǎn)
作兩條斜率存在且互相垂直的直線
,設(shè)
與軌跡
相交于點(diǎn)
,
與軌跡
相交于點(diǎn)
,求
的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com