已知橢圓
經(jīng)過(guò)點(diǎn)
,且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)動(dòng)直線
交橢圓
于
、
兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)
,使得以
為直徑的圓恒過(guò)點(diǎn)
.若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)
(2)點(diǎn)
就是所求的點(diǎn)
解析試題分析:(Ⅰ)橢圓
的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)連線構(gòu)成等腰直角三角形,所以
,故橢圓的方程為
.
又因?yàn)闄E圓經(jīng)過(guò)點(diǎn)
,代入可得
,2分
所以
,故所求橢圓方程為
.4分
(Ⅱ)當(dāng)直線
的斜率為0時(shí),直線
為
,直線
交橢圓
于
、
兩點(diǎn),以
為直徑的圓的方程為
;
當(dāng)直線
的斜率不存在時(shí),直線
為
,直線
交橢圓
于
、
兩點(diǎn),以
為直徑的圓的方程為
,
由
解得![]()
即兩圓相切于點(diǎn)
,因此,所求的點(diǎn)
如果存在,只能是
.8分
事實(shí)上,點(diǎn)
就是所求的點(diǎn).
證明如下:
當(dāng)
的斜率不存在時(shí),以
為直徑的圓過(guò)點(diǎn)
.9分
若
的斜率存在時(shí),可設(shè)直線
為
,
由
消去
得
.
記點(diǎn)
、
,則
10分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4b/b/6tdnb1.png" style="vertical-align:middle;" />,
所以![]()
![]()
.
所以
,即以
為直徑的圓恒過(guò)點(diǎn)
,12分
所以在坐標(biāo)平面上存在一個(gè)定點(diǎn)
滿足條件.13分
考點(diǎn):直線與橢圓的位置關(guān)系
點(diǎn)評(píng):主要是考查了解析幾何中運(yùn)用代數(shù)的方法來(lái)建立方程組結(jié)合韋達(dá)定理來(lái)研究位置關(guān)系的運(yùn)用,屬于中檔題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
過(guò)點(diǎn)
,其長(zhǎng)軸、焦距和短軸的長(zhǎng)的平方依次成等差數(shù)列.直線
與
軸正半軸和
軸分別交于點(diǎn)
、
,與橢圓分別交于點(diǎn)
、
,各點(diǎn)均不重合且滿足![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若
,試證明:直線
過(guò)定點(diǎn)并求此定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的離心率為
,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
,直線
交橢圓于不同的兩點(diǎn)
。
(1)求橢圓的方程;
(2)若坐標(biāo)原點(diǎn)
到直線
的距離為
,求
面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知M (-3,0)﹑N (3,0),P為坐標(biāo)平面上的動(dòng)點(diǎn),且直線PM與直線PN的斜率之積為常數(shù)m (m![]()
,m
0),點(diǎn)P的軌跡加上M、N兩點(diǎn)構(gòu)成曲線C.
求曲線C的方程并討論曲線C的形狀;
(2) 若
,曲線C過(guò)點(diǎn)Q (2,0) 斜率為
的直線
與曲線C交于不同的兩點(diǎn)A﹑B,AB中點(diǎn)為R,直線OR (O為坐標(biāo)原點(diǎn))的斜率為
,求證
為定值;
(3) 在(2)的條件下,設(shè)
,且
,求
在y軸上的截距的變化范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若橢圓
的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的離心率為
:2.(1)過(guò)點(diǎn)C(-1,0)且以向量
為方向向量的直線
交橢圓于不同兩點(diǎn)A、B,若
,則當(dāng)△OAB的面積最大時(shí),求橢圓的方程。
(2)設(shè)M,N為橢圓上的兩個(gè)動(dòng)點(diǎn),
,過(guò)原點(diǎn)O作直線MN的垂線OD,垂足為D,求點(diǎn)D的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)雙曲線與橢圓
+
=1有公共的焦點(diǎn),且與橢圓相交,它們的交點(diǎn)中一個(gè)交點(diǎn)的縱坐標(biāo)是4,求雙曲線的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)
是橢圓
的右焦點(diǎn),點(diǎn)
、
分別是
軸、
軸上的動(dòng)點(diǎn),且滿足
.若點(diǎn)
滿足
.
(Ⅰ)求點(diǎn)
的軌跡
的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)
任作一直線與點(diǎn)
的軌跡交于
、
兩點(diǎn),直線
、
與直線
分別交
于點(diǎn)
、
(
為坐標(biāo)原點(diǎn)),試判斷
是否為定值?若是,求出這個(gè)定值;若不是,
請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的兩焦點(diǎn)是F1(0,-1),F(xiàn)2(0,1),離心率e=![]()
(1)求橢圓方程;(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com